
Gauss’ Law 
Challenge Problem Solutions 

Problem 1:  
 
The grass seeds figure below shows the electric field of three charges with charges +1, 
+1, and -1,   The Gaussian surface in the figure is a sphere containing two of the charges.   
 

 
 

The total electric flux through the spherical Gaussian surface is 
 

a) Positive 
 
b) Negative 

 
c) Zero 

 
d) Impossible to determine without more information 

 

 

Problem 1 Solution:  
c. Because the field lines connect the two charges within the Gaussian surface they must 
have opposite sign. Therefore the charge enclosed in the Gaussian surface is zero. Hence 
the electric flux through the surface of the Gaussian surface is also zero. 



Problem 2: 
 
(a) Four closed surfaces, S1 through S4, together with the charges –2Q, Q, and –Q are 
sketched in the figure at right. The colored lines are the intersections of the surfaces with 
the page.  Find the electric flux through each surface.  
 
 
 
 
 
 
 
 
 
 
 
 
(b) A pyramid has a square base of side a, and four faces which are equilateral triangles. 
A charge  Q is placed at the center of the base of the pyramid. What is the net flux of 
electric field emerging from one of the triangular faces of the pyramid? 
 
 
Problem 2 Solutions:  
 
(a) By Gauss’s Law, the flux through the closed surfaces is equal to the charge enclosed 
over ε0.  So,  

1 2 30 0; 0; 2 ;S S SQ Q
4

0Sε εΦ = − Φ = Φ = − Φ =  
 
 
(b) Two pyramids attached at their base form an eight sided regular octahedron with 
triangular faces.   By Gauss’s Law, the flux through the entire closed surface is equal to 
the charge enclosed over ε0.  So,    ΦS = Q ε0 . The flux on each of the eight faces is 
equal, so the net flux of electric field emerging from one of the triangular faces of the 
pyramid is 
 

  
Φ face = Q 8ε0 . 
 



Problem 3: 
 
Careful measurements reveal an electric field  
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where  and a R   are constants. Which of the following best describes the charge 
distribution giving rise to this electric field? 
 

a) A negative point charge at the origin with charge  04q aπε=  and a uniformly 
positive charged spherical shell of radius R  with surface charge density  

2/ 4q Rσ π= − . 
 

b) A positive point charge at the origin with charge  04q aπε=  and a uniformly 
negative charged spherical shell of radius R  with surface charge density  

2/ 4q Rσ π= − . 
 

c) A positive point charge at the origin with charge  04q aπε=  and a uniformly 
negative charged sphere of radius R  with charge density  . 3/(4 / 3)q Rρ π= −

 
d) A negative point charge at the origin with charge  04q aπε− = −  and a uniformly 

positive charged sphere of radius R  with charge density . 3/(4 / 3)q Rρ π=
 

e) Impossible to determine from the given information. 
 
Problem 3 Solution:  
c.  As you shall see below the answer should be c. because the problem does not specify 
the sign of the constant a. However both description c. and d. do seem plausible so we 
shall accept answers c., d., and e.  
 
Assume . Then the electric field can be thought of as the superposition of two 

fields, 
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2
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R− = −E r
G

( )r+E. 
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 is the electric field of a positive point 

charge at the origin with 04q aπε= . ( )r−E
G

 is the electric field of a uniformly negative 
charged sphere of radius R . Because the electric field for radius  is zero, the sum 
of the two charges distributions must be zero. Therefore the charge density must satisfy 

 . 
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Now assume . Suppose the electric field can now be thought of as the superposition 

of two fields, 
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( )r−. E
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 is the electric field of a negative 

point charge at the origin with 04q a 0πε− = > , hence 0q < . ( )r+E
G

 is the electric field of 
a uniformly positively charged sphere of radius R . Because the electric field for radius 

 is zero, the sum of the two charges distributions must be zero. Therefore the 
charge density must satisfy  . Therefore when 
r R>

3/(4 / 3) 0q Rρ π= < 0a <  the only 
possible answer d. cannot be correct.  
 
 
 
 



Problem 4: 
A pyramid has a square base of side a, and four faces which are equilateral triangles. A 
charge Q is placed on the center of the base of the pyramid. What is the net flux of 
electric field emerging from one of the triangular faces of the pyramid? 
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5. Undetermined: we must know whether Q is infinitesimally above or below the 
plane? 

 
Problem 4 Solution:  
 
2: Explain your reasoning: Construct an eight faced closed surface consisting of two 
pyramids with the charge at the center. The total flux by Gauss’s law is just 0/Q ε . Since 
each face is identical, the flux through each face is one eight the total flux or 0/ 8Q ε . 
 

 
 



 
Problem 5: 
A charge distribution generates a radial electric field  
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where a and b are constants. The total charge giving rise to this electric field is  
 

1. 04 aπε  
2. 0 
3. 04 bπε  

 
Problem 5 Solution: 
  
2: Explain your reasoning: In order to fine the total charge I choose a Gaussian surface that 
extends over all space. Because the electric field is radially symmetric, I choose my Gaussian 
surface to be a sphere of radius  and I will take the limit as . The flux is given by r r →∞
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a
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When I take the limit as , the exponential term goes to zero, and so the flux goes to zero. 
Therefore the charge enclosed is zero. 

r →∞

 
 



Problem 6: 
 
The bottom surface of a thundercloud of area A  and the earth can be modeled as a pair of 
infinite parallel plate with equal and opposite surface uniform charge densities.  Suppose the 
vertical electric field at the surface of the earth has a magnitude atmE

G
 and points towards the 

thundercloud. 
 

a) Find an expression for the total charge densityσ on the bottom surface of a thundercloud? 
Is this charge density positive or negative? 

 
b) Suppose that the water in the thundercloud forms water droplets of radius  that carry all 

the charge of the thundercloud.  The drops fall to the ground and make a height  of 
rainfall directly under the thundercloud.  Find an expression for the charge on each 
droplet of water. 

r
h

 
c) For the drops in part b), find an expression for the electric field dropE

G
on the surface of 

the drop due only to the charge on the drop? 
 

d) If a typical drop has radius  and the rainfall makes a height 
, what is the ratio 

. 1r 5 0 10 mm−= ×
. 3h 2 5 10 m−= × drop atmf E E

G G
= ? 

 
Problem 6 Solutions: 
 
(a)  The electric field points from the earth upward to the thundercloud.  Therefore the bottom of 
the thundercloud must carry a negative charge.  Therefore  
 

o atmσ ε= − E
G

                                                     (17) 

(b)  The raindrops fall to earth and make a layer of water of height h over the area A of the cloud.  
Therefore the total volume of water is hA.  If each droplet had a volume of 34

3 rπ before it hit the 
ground  and merged into the layer, then the layer is made up of a total number of drops given by 

34
3/hA rπ .  Suppose each drop carried a charge q.Then the total charge carried by the layer of 

water is 
 

34
3/layerQ qhA rπ=                                                      (18) 

 
and therefore the surface charge on the layer is 
 

34
3/ /layer layerQ A qh rσ π= =                                              (19) 

 
If we equate the surface charge density in (19) with that given in (17), we have for q 
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                                             (20) 

 
So the electric field at the surface of a drop of radius r with charge q is  
 

24 3drop atm
o

q r
r hπε

= =E E
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                                             (21) 

(d)  From above, 
 

    

r
Edrop /

r
Eatm =

r
3h

=
5×10−4

(3)(2.5×10−3)
= 0.067                               (22) 

 



Problem 7: 
 
A sphere of radius R  has a charge density 0 ( / )r Rρ ρ=  where  ρ0  is a constant and  is the 
distance from the center of the sphere.  

r

 
a) What is the total charge inside the sphere?  
 
b) Find the electric field everywhere (both inside and outside the sphere). 
 
Problem 7 Solution: 
 
(a)The total charge inside the sphere is the integral 
 

4
2 2 30 0

0 0
0 0 0

4 44 ( / )4
4

r R r R r R

r r r

RQ r dr r R r dr r dr R
R R

ρ π ρ π 3ρ π ρ π ρ
= = =

′ ′= = =

= = = = =∫ ∫ ∫ π  

 
 
(b)There are two regions of space: region I:  r R< , and region II:  so we apply Gauss’ 
Law to each region to find the electric field.  

r R>

 
For region I: , we choose a sphere of 
radius  

r R<
r  as our Gaussian surface.  Then, the 

electric flux through this closed surface is 
 

24Id E rπ⋅ = ⋅∫∫ IE A
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w . 

 
 
Since the charge distribution is non-uniform, we will need to integrate the charge density to find 
the charge enclosed in our Gaussian surface. In the integral below we use the integration variable 

 in order to distinguish it from the radius  of the Gaussian sphere. r′ r
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Notice that the integration is primed and the radius of the Gaussian sphere appears as a limit of 
the integral. 
 
Recall that Gauss’s Law equates electric flux to charge enclosed: 
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So we substitute the two calculations above into Gauss’s  Law to arrive at: 
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We can solve this equation for the electric field 
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The electric field points radially outward and has magnitude  
2
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For region II: : we choose the same 
spherical Gaussian surface of radius , 
and the electric flux has the same form 

r R>
r R>
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All the charge is now enclosed, 3

0encQ Q Rρ π= = , so the right hand side of Gauss’s Law 
becomes  
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Then Gauss’s Law becomes 
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We can solve this equation for the electric field 
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In this region of space, the electric field points radially outward and has magnitude 

3
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> , so it falls off as  as we expect since outside the charge 

distribution, the sphere acts as if it all the charge were concentrated at the  origin. 
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Problem 8:  

When two slabs of N-type and P-type semiconductors are put in contact, the relative 
affinities of the materials cause electrons to migrate out of the N-type material across the 
junction to the P-type material. This leaves behind a volume in the N-type material that is 
positively charged and creates a negatively charged volume in the P-type material. 
 
Let us model this as two infinite slabs of charge, both of thickness  with the junction 
lying on the plane . The N-type material lies in the range 

a
z = 0 0 < z< a and has uniform 

charge density +ρ0 . The adjacent P-type material lies in the range −a < z< 0  and has 
uniform charge density −ρ0 . Thus: 
 

ρ(x, y, z) = ρ(z) =

+ρ0 0 < z< a

−ρ0 − a< z< 0

0 z >a
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Find the electric field everywhere. 

 
 
Problem 8 Solution: 
 
In this problem, the electric field is a 
superposition of two slabs of opposite 
charge density.  

 
 
Outside both slabs, the field of a positive slab  

G
EP  (due to the P-type semi-conductor ) is 

constant and points away and the field of a negative slab  
G
EN  (due to the N-type semi-

conductor )is also constant and points towards the slab, so when we add both 
contributions we find that the electric field is zero outside the slabs. The fields   are 
shown on the figure below. The superposition of these fields 

G
EP

 
G
ET  is shown on the top line 

in the figure. 
 
 



 
 
 
The electric field  can be described by 
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We shall now calculate the electric field in each region using Gauss’s Law: 
 
For region :  The Gaussian surface is shown on the left hand side of the figure 
below. Notice that the field is zero outside. Gauss’s Law states that 

0a z− < <
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So for our choice of Gaussian surface, on the cap inside the slab the unit normal for the 
area vector points in the positive z-direction, thus  ˆˆ = +n k  . So the dot product becomes 

. Therefore the flux is 2 2, 2,
ˆ ˆˆ zda E da E da⋅ = ⋅ =E n k k
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The charge enclosed is 
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where the length of the Gaussian cylinder is a z+  since 0z < . 
 
Substituting these two results into Gauss’s Law yields  
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Hence the electric field in the N-type is given by 
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The negative sign means that the electric field point in the –z direction so the electric 
field  vector is 
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We make a similar calculation for the electric field in the P-type noting that the charge 
density has changed sign and the expression for the length of the Gaussian cylinder is 

 since . Also the unit normal now points in the –z-direction. So the dot product 
becomes 
a z− 0z >
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Thus Gauss’s Law becomes 
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So the resulting field is 
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The graph of the electric field is shown below 
 

. 
 



Problem 9: 
 
A very long conducting cylinder (length L and radius a) carrying a total charge +q is 
surrounded by a thin conducting cylindrical shell (length L and radius b) with total charge 
–q, as shown in the figure.   
 

 
 
(a)  Using Gauss’s Law, find an expression for the direction and magnitude of the electric 
field E

G
 for the region r < a. 

 
(b)  Similarly, find an expression for the direction and magnitude of the electric field E

G
 

for the region .   a r b< <
 
Problem 9 Solution:  
 
(a)The electric field is zero inside the inner conducting cylinder. 
 
 
(b)We use a Gaussian cylinder of length l and radius a r b< < .  Then, the flux is  
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The charge enclosed is given by  
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Problem 10: 
 
A sphere of radius 2R  is made of a non-conducting material that has a uniform volume 
charge density ρ . (Assume that the material does not affect the electric field.)  A 
spherical cavity of radius R  is then carved out from the sphere, as shown in the figure 
below. Find the electric field within the cavity. 

 
 
Problem 10 Solution:  
At first glance this charge distribution does not seem to have any of the symmetries that 
enable us to use Gauss’s law. However we can consider this charge distribution as the 
sum of two uniform spherical distributions of charge. The first is a sphere of radius 2R  
centered at the origin with a uniform volume charge density ρ . The second is a sphere of 
radius R  centered at the point along the y-axis a distance R  from the origin (the center 
of the spherical cavity) with a uniform volume charge density ρ− .  
 

 
 
When we add together these two distributions of charge we obtain the uniform charged 
sphere with a spherical cavity of radius R as described in the problem.  We can then add 
together the electric fields from these two distributions at any point in the cavity to obtain 
the electric field of the original distribution at that point inside the cavity (superposition 
principle). Each of these two distributions are spherically symmetric and therefore we can 
use Gauss’s Law to find the electric field associated with each of them.. We do need to be 
careful when we add together the electric fields. As you will see that process is somewhat 
subtle and a good vector diagram will help considerably. 
 
So let’s begin by choosing a point  inside the cavity. We will now apply Gauss’s Law 
to our first distribution, the sphere of radius 

P
2R  centered at the origin with a uniform 



volume charge density ρ . The point  is a distance P r 2R<  from the origin. We choose a 
sphere of radius  r  as our Gaussian surface with r 2R< .   
 

 
 
Then, the electric flux through this closed surface is 
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where Eρ  denotes the outward normal component of the electric field at the point  
associated to the spherical distribution with uniform volume charge density

P
ρ . Because 

the charge distribution is uniform, the charge enclosed in the Gaussisan surface is 
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Recall that Gauss’ Law equates electric flux to charge enclosed: 
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So we substitute the two calculations above into Gauss’ law to arrive at: 
 
 

3
2

0

(4 / 3)4 rE rρ
ρ ππ

ε
⋅ = . 

 
We can solve this equation for the electric field 
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where  is a unit vector at the point  pointing radially away from the origin.  r̂ P
 



We now apply Gauss’s Law to our second distribution, a sphere of radius R  centered at 
the point along the y-axis a distance R  from the origin with a uniform volume charge 
density ρ− . The point  is a distance P r R′ <  from the center of the cavity. 

 
We choose a sphere of radius r  as our Gaussian surface with r′ R′ < .  Then, the electric 
flux through this closed surface is 
 

    
r
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r
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where E ρ−  denotes the  outward normal component of the electric field at the point  
associated to the spherical distribution with uniform volume charge density

P
ρ− . Because 

the charge distribution is uniform, the charge enclosed in the Gaussisan surface is 
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Therefore applying Gauss’s Law yields 
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We can solve this equation for the electric field 
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where  is a unit vector at the point  pointing radially away from the center of the 
cavity.  

ˆ′r P

 



 
The electric field associated with our original distribution is then 
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where r  is a vector from the origin to the point  and G

P ′r
G  is a vector from the center of 

the cavity to the point . From our diagram we see that P ′= −a r r
G G G

.  
 

 
 
Therefore the electric field at the point  is given by P
 

0

( )
3

P ρ
ε

=E a
G G . 

 
This is a remarkable result. The electric field inside the cavity is uniform. The direction 
of the electric field points from the center of entire sphere to the center of the cavity. This 
direction is uniquely specified and is an example of ‘broken symmetry’. 
  
 
 



Problem 11: 
 
(a) This problem demonstrates how one can use Gauss’s law to draw important 
conclusions about the electric field associated with charged conductors. The following 
points will help you answer the questions posed in the problem 

 
(i) In general charge resides on the surface of a conductor. 
 
(ii) The electric field is zero inside the conductor. (This must be so in a static 

situation; otherwise electric currents would be flowing, contrary to the 
assumption. 

 
(iii) Induced charge on the inner surface is exactly equal to q− . (A Gaussian surface, 

enclosing the  charge inside the cavity and the q+ q−  charge on the inner surface, 
and staying entirely inside the conductor proves the above statement with the help 
of Gauss’s Law.  

 
(iv) Since the conductor has no net charge, the outer surface must carry  charge. q+
 
(v) The electric field outside any metallic surface is normal to the surface; its 

magnitude is 0/σ ε  by virtue of Gauss’s law. (Recall, any metallic surface is an 
equipotential surface.) 

 
Although we cannot derive the distribution of the charge q−  on the inner surface of the 
conductor without more sophisticated mathematics, we can nonetheless say that since the 
fields from all inner charges must add to give a zero field inside the metal, there must be 
more negative charge near the  (and less farther away). So the charge distribution 
must look like this: 

q+

 

  

In particular, notice that the charges on the outside of the shell are uniformly distributed!  

(b) The electric field lines are shown in the sketch above. Notice that the field lines are 
closer together where the density of negative charges is greatest. Outside the sphere, the 
field looks like that from a point charge 0q+ . 



 
 
(c) No. The negative charge on the inside of the metal does, of course, rearrange itself in 
order to keep the field zero inside the conductor. The positive charge induced on the 
outside is totally uninfluenced because of the arguments presented in (a). 
 
(d) When the “source charge”  touches the inner surface, a total neutralization inside 
the sphere (inner surface plus cavity) takes place; only the induced charge outside 
remains and is distributed uniformly on the surface.  

0q+

 
(e) The behavior of the field just before contact is shown in the figure below: 
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