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Gauss’s Law 

4.1  Electric Flux 

In Chapter 2 we showed that the strength of an electric field is proportional to the number 
of field lines per area.  The number of electric field lines that penetrates a given surface is 
called an “electric flux,” which we denote as ΦE . The electric field can therefore be 
thought of as the number of lines per unit area.  

Figure 4.1.1   Electric field lines passing through a surface of area A. 

r 
Consider the surface shown in Figure 4.1.1. Let A = An̂ be defined as the area vector 
having a magnitude of the area of the surface, A , and pointing in the normal direction, ur 
n̂ . If the surface is placed in a uniform electric field E that points in the same  direction 
as n̂ , i.e., perpendicular to the surface A, the flux through the surface is 

r r r
Φ = ⋅  = ⋅  E A  E n  ˆ A = EA (4.1.1)E 

ur
On the other hand, if the electric field E  makes an angle θ with n̂ (Figure 4.1.2), the 
electric flux becomes  

r r 
Φ = ⋅  =  E A  EAcosθ = E A  (4.1.2)E n 

r r 
where En E n̂ is the component of E perpendicular to the surface. = ⋅

Figure 4.1.2 Electric field lines passing through a surface of area A whose normal makes 
an angle θ with the field. 
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Note that with the definition for the normal vector n̂ , the electric flux ΦE is positive if 
the electric field lines are leaving the surface, and negative if entering the surface. 

ru

In general, a surface S can be curved and the electric field E may vary over the surface. 

We shall be interested in the case where the surface is closed. A closed surface is a 

surface which completely encloses a volume. In order to compute the electric flux, we 

r 
ˆA Adivide the surface into a large number of infinitesimal area elements Δ = Δ  n , asi i i 

ˆshown in Figure 4.1.3. Note that for a closed surface the unit vector is chosen to pointni 

in the outward normal direction. 

r

Figure 4.1.3 Electric field passing through an area element ΔAi , making an angle θ  with 
the normal of the surface. 

r 
AΔ  isiThe electric flux through 

r
r

ΔΦ = E ⋅ΔA = E A  cosΔ θ (4.1.3)E i i i i

r
The total flux through the entire surface can be obtained by summing over all the area 
elements. Taking the limit ΔAi → 0  and the number of elements to infinity, we have 

Φ =  lim E ⋅ dA = E ⋅ dA (4.1.4)E Ai 0 ∑ 
r 

i 

r 
i Ò∫∫ 

r r 
Δ →  

S 

where the symbol �∫∫ denotes a double integral over a closed surface S. In order to 
S 

ur
 r
evaluate the above integral, we must first specify the surface and then sum over the dot 
product E ⋅ d A . 

4.2  Gauss’s Law 

ruConsider a positive point charge Q located at the center of a sphere of radius r, as shown 
πε0r

2 )r̂in Figure 4.2.1. The electric field due to the charge Q is E = ( / 4  Q , which points 
in the radial direction. We enclose the charge by an imaginary sphere of radius r called 
the “Gaussian surface.” 
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Figure 4.2.1   A spherical Gaussian surface enclosing a charge Q . 

In spherical coordinates, a small surface area element on the sphere is given by (Figure 
4.2.2) 

r
dA = r2 sin d dφ ˆθ θ  r (4.2.1) 

Figure 4.2.2 A small area element on the surface of a sphere of radius r. 

Thus, the net electric flux through the area element is 

r 
dΦ =  

r
⋅ d = E dA = ⎜

⎛ 1 Q
⎟
⎞(r sin d dφ ) = QE A  2 θ θ  sin θ d dθ φ (4.2.2)E 2

⎝ 4πε0 r ⎠ 4πε0 

The total flux through the entire surface is  

Φ =  E A  = sin d dφ = (4.2.3)E �∫∫ 
r 
⋅ d 
r Q

∫
π 

θ θ ∫
2π Q 

0 04πε εS 0 0 

The same result can also be obtained by noting that a sphere of radius r has a surface area 
A = 4π r 2 , and since the magnitude of the electric field at any point on the spherical 
surface is E = Q / 4πε0r

2 , the electric flux through the surface is 

r r ⎛ 1 Q ⎞ 2 QΦ =  E A⋅d = E  dA E= A = 4π r = (4.2.4)E �∫∫ 
S 

�∫∫ 
S 

⎜
⎝ 4πε0 r2 ⎟

⎠ ε0 
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In the above, we have chosen a sphere to be the Gaussian surface. However, it turns out 
that the shape of the closed surface can be arbitrarily chosen. For the surfaces shown in 
Figure 4.2.3, the same result ( Φ =  Q / ε ) is obtained. whether the choice is S , S  orE 0 1 2 

S3 . 

Figure 4.2.3   Different Gaussian surfaces with the same outward electric flux. 

The statement that the net flux through any closed surface is proportional to the net 
charge enclosed is known as Gauss’s law. Mathematically, Gauss’s law is expressed as 

encΦ =  Ò
ur 
⋅ d 

r 
= 

q (Gauss’s law) (4.2.5)E ∫∫ E A  
εS 0 

where qenc is the net charge inside the surface. One way to explain why Gauss’s law 
holds is due to note that the number of field lines that leave the charge is independent of 
the shape of the imaginary Gaussian surface we choose to enclose the charge. 

r
To prove Gauss’s law, we introduce the concept of the solid angle. Let ΔA1 = Δ  A1 r̂ be 
an area element on the surface of a sphere S1  of radius r1 , as shown in Figure 4.2.4. 

Figure 4.2.4 The area element ΔA  subtends a solid angle ΔΩ . 

r
The solid angle ΔΩ  subtended by ΔA1 = Δ  A1 r̂  at the center of the sphere is defined as  

ΔΩ ≡ ΔA 
2

1 (4.2.6)
r1 
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Solid angles are dimensionless quantities measured in steradians (sr). Since the surface 
area of the sphere S1  is 4π r1

2 , the total solid angle subtended by the sphere is 

Ω =  
4π 

2 

r1
2 

= 4π (4.2.7)
r1 

The concept of solid angle in three dimensions is analogous to the ordinary angle in two 
dimensions. As illustrated in Figure 4.2.5, an angle Δϕ is the ratio of the length of the 
arc to the radius r  of a circle: 

ϕ Δs (4.2.8)Δ =
r 

Figure 4.2.5 The arc Δs  subtends an angle Δϕ . 

Since the total length of the arc is s = 2π r , the total angle subtended by the circle is 

2π rϕ = = 2π (4.2.9)
r 

r 
In Figure 4.2.4, the area element ΔA2 makes an angle θ with the radial unit vector r̂ , 
then the solid angle subtended by ΔA2 is 

r
ΔA r  Δ AΔΩ = 2 ⋅ ̂  

= 
A2 cos θ = Δ 2n  (4.2.10)2 2 2r2 r2 r2 

where ΔA2n = Δ  A2 cos θ is the area of the radial projection of ΔA2 onto a second sphere 
S2 of radius r2 , concentric with S1 . 

As shown in Figure 4.2.4, the solid angle subtended is the same for both ΔA1 and ΔA2n : 

ΔA ΔA cos θΔΩ = 2
1 = 2 

2 (4.2.11)
r1 r2 
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Now suppose a point charge Q is placed at the center of the concentric spheres. The 
electric field strengths E1 and E2 at the center of the area elements ΔA1 and ΔA2 are 
related by Coulomb’s law: 

1 Q E r  2 

Ei = ⇒ 2 = 1 (4.2.12)
4πε r2 E r 2 

0 i 1 2 

The electric flux through ΔA1 on S1 is 

r r 
ΔΦ = ⋅Δ  =  E A  (4.2.13)E A  Δ1 1 1 1

On the other hand, the electric flux through ΔA2 on S2 is 

r r ⎛ r1
2 ⎞ ⎛  r2

2 ⎞
E ⋅Δ A = E A cos θ = E ⋅ A  E A  ΔΦ2 = 2 2 2 Δ 2 1 ⎜ 2 ⎟ ⎜  2 ⎟ 1 = 1 Δ 1 = Φ 1 (4.2.14)

⎝ r2 ⎠ ⎝  r1 ⎠ 

Thus, we see that the electric flux through any area element subtending the same solid 
angle is constant, independent of the shape or orientation of the surface. 

In summary, Gauss’s law provides a convenient tool for evaluating electric field. 
However, its application is limited only to systems that possess certain symmetry, 
namely, systems with cylindrical, planar and spherical symmetry. In the table below, we 
give some examples of systems in which Gauss’s law is applicable for determining 
electric field, with the corresponding Gaussian surfaces: 

Symmetry System Gaussian Surface Examples 
Cylindrical Infinite rod Coaxial Cylinder Example 4.1 

Planar Infinite plane Gaussian “Pillbox” Example 4.2 

Spherical Sphere, Spherical shell Concentric Sphere Examples 4.3 & 4.4 

The following steps may be useful when applying Gauss’s law:  

(1) Identify the symmetry associated with the charge distribution. 

(2) Determine the direction of the electric field, and a “Gaussian surface” on which the 
magnitude of the electric field is constant over portions of the surface.  

(3) Divide the space into different regions associated with the charge distribution. For 
each region, calculate qenc , the charge enclosed by the Gaussian surface. 
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(4) Calculate the electric flux ΦE  through the Gaussian surface for each region. 

(5) Equate ΦE  with qenc / ε0 , and deduce the magnitude of the electric field. 

Example 4.1: Infinitely Long Rod of Uniform Charge Density 

An infinitely long rod of negligible radius has a uniform charge density λ . Calculate the 
electric field at a distance r  from the wire.   

Solution: 

We shall solve the problem by following the steps outlined above.   

(1) An infinitely long rod possesses cylindrical symmetry.   

(2) The charge density is uniformly distributed throughout the length, and the electric 
r 

field E must be point radially away from the symmetry axis of the rod (Figure 4.2.6). 
The magnitude of the electric field is constant on cylindrical surfaces of radius r . 
Therefore, we choose a coaxial cylinder as our Gaussian surface.   

Figure 4.2.6 Field lines for an infinite uniformly charged rod (the symmetry axis of the 
rod and the Gaussian cylinder are perpendicular to plane of the page.) 

(3) The amount of charge enclosed by the Gaussian surface, a cylinder of radius r  and 
length l  (Figure 4.2.7), is qenc = λl . 

Figure 4.2.7 Gaussian surface for a uniformly charged rod.  
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(4) As indicated in Figure 4.2.7, the Gaussian surface consists of three parts: a two ends 
S1  and S2 plus the curved side wall S3 . The flux through the Gaussian surface is 

E Ò∫∫ 
r 
⋅ d 

r 
= ∫∫E 

r
1 ⋅ dA 

r
1 + ∫∫E 

r
2 ⋅ dA 

r
2 + ∫∫E 

r
3 ⋅ dA 

r
3Φ =  E A  

S S1 S2 S3 (4.2.15) 
= +  3 3  (2 )0 0 + E A  = E π rl 

where we have set E3 = E . As can be seen from the figure, no flux passes through the 
r r 

ends since the area vectors dA1 and dA2 are perpendicular to the electric field which 
points in the radial direction. 

(5) Applying Gauss’s law gives E (2π rl) = λl / ε , or0 

λE =  (4.2.16)
2πε0r 

The result is in complete agreement with that obtained in Eq. (2.10.11) using Coulomb’s 
law. Notice that the result is independent of the length l of the cylinder, and only 
depends on the inverse of the distance r from the symmetry axis. The qualitative 
behavior of E  as a function of r  is plotted in Figure 4.2.8. 

Figure 4.2.8 Electric field due to a uniformly charged rod as a function of r 

Example 4.2: Infinite Plane of Charge 

Consider an infinitely large non-conducting plane in the xy-plane with uniform surface 
charge density σ . Determine the electric field everywhere in space.  

Solution: 

(1) An infinitely large plane possesses a planar symmetry.  
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r
(2) Since the charge is uniformly distributed on the surface, the electric field E  must 
point perpendicularly away from the plane, E 

r 
= E k̂ . The magnitude of the electric field 

is constant on planes parallel to the non-conducting plane. 

Figure 4.2.9 Electric field for uniform plane of charge 

We choose our Gaussian surface to be a cylinder, which is often referred to as a “pillbox” 
(Figure 4.2.10). The pillbox also consists of three parts: two end-caps S1  and S2 , and a 
curved side S3 . 

Figure 4.2.10 A Gaussian “pillbox” for calculating the electric field due to a large plane. 

(3) Since the surface charge distribution on is uniform, the charge enclosed by the 
Gaussian “pillbox” is qenc =σ A , where A A= 1 = A2  is the area of the end-caps.  

(4) The total flux through the Gaussian pillbox flux is 

Ò∫∫ 
r 
⋅ d 

r 
= ∫∫E 

r 
⋅ dA 

r 
+ ∫∫E 

r 
⋅ dA 

r 
+ ∫∫E 

r 
⋅ dA 

r 
Φ =  E AE 1 1 2 2 3 3 

S S1 S2 S3 

= E A + E A  + 0 (4.2.17)1 1  2 2  

(E1 + 2 )= E A  
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Since the two ends are at the same distance from the plane, by symmetry, the magnitude 
of the electric field must be the same: E1 = E2 = E . Hence, the total flux can be rewritten 
as 

Φ = 2EA  (4.2.18)E

(5) By applying Gauss’s law, we obtain 

qenc σ A2EA = = 
ε0 ε0 

which gives 
σE =  (4.2.19)

2ε0 

In unit-vector notation, we have  

⎧ σ ˆ
⎪ k, z > 0 

E 
r
= ⎨
⎪ 2ε0 (4.2.20) 
⎪− σ k̂, z < 0
⎪ 2ε⎩ 0 

Thus, we see that the electric field due to an infinite large non-conducting plane is 
uniform in space. The result, plotted in Figure 4.2.11, is the same as that obtained in Eq. 
(2.10.21) using Coulomb’s law.  

Figure 4.2.11 Electric field of an infinitely large non-conducting plane. 

Note again the discontinuity in electric field as we cross the plane: 

σ ⎛ σ ⎞ σΔE = E − E = − −  =  (4.2.21)z z+ z− 2ε0 ⎝
⎜ 2ε0 ⎠

⎟ ε0 
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Example 4.3: Spherical Shell 

A thin spherical shell of radius a has a charge +Q evenly distributed over its surface. 
Find the electric field both inside and outside the shell. 

Solutions: 

The charge distribution is spherically symmetric, with a surface charge density 
σ = / s = / 4  a2 , where As = π 2Q A  Q  π 4 a is the surface area of the sphere. The electric field 
r 
E must be radially symmetric and directed outward (Figure 4.2.12). We treat the regions 
r a ≥ separately.≤  and r a

Figure 4.2.12 Electric field for uniform spherical shell of charge 

Case 1: r a≤ 

We choose our Gaussian surface to be a sphere of radius r a≤ , as shown in Figure 
4.2.13(a). 

(a) (b) 

Figure 4.2.13 Gaussian surface for uniformly charged spherical shell for (a) r a< , and 
(b) r a≥ 

The charge enclosed by the Gaussian surface is qenc = 0 since all the charge is located on 
the surface of the shell. Thus, from Gauss’s law, Φ = q / ε , we conclude E enc 0 

E = 0, r a  <  (4.2.22) 

Case 2: r a≥ 
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In this case, the Gaussian surface is a sphere of radius r a , as shown in Figure≥ 
4.2.13(b). Since the radius of the “Gaussian sphere” is greater than the radius of the 
spherical shell, all the charge is enclosed: 

qenc = Q 

Since the flux through the Gaussian surface is 

r r 
Φ =  ⋅  d = E = (4π 2 )Ò∫∫ E A  A E  rE 

S 

by applying Gauss’s law, we obtain 

E = 
4πε 

Q 

0r
2 = ke r

Q 
2 , ≥r a  (4.2.23) 

Note that the field outside the sphere is the same as if all the charges were concentrated at 
the center of the sphere. The qualitative behavior of E as a function of r is plotted in 
Figure 4.2.14. 

Figure 4.2.14 Electric field as a function of r due to a uniformly charged spherical shell.  

As in the case of a non-conducting charged plane, we again see a discontinuity in E as we 
cross the boundary at r a . The change, from outer to the inner surface, is given by = 

Δ = + − 

Q 
2 = σE E  E  − = − 0 

4πε0a ε0 

Example 4.4: Non-Conducting Solid Sphere 

An electric charge +Q is uniformly distributed throughout a non-conducting solid sphere 
of radius a . Determine the electric field everywhere inside and outside the sphere. 

Solution: 

4-13 



The charge distribution is spherically symmetric with the charge density given by 

ρ = Q = Q 
3 (4.2.24)

V (4/3) πa 

r
where V is the volume of the sphere. In this case, the electric field E  is radially 
symmetric and directed outward. The magnitude of the electric field is constant on 
spherical surfaces of radius r . The regions r a ≥ shall be studied separately.≤  and r a

≤ .Case 1: r a

We choose our Gaussian surface to be a sphere of radius r a≤ , as shown in Figure 
4.2.15(a). 

(a) (b) 

Figure 4.2.15 Gaussian surface for uniformly charged solid sphere, for (a) r a≤ , and (b) 
r a> . 

The flux through the Gaussian surface is 

r r 
Φ =  ⋅d = E = (4π 2 )E Ò∫∫ E A  A E  r

S 

With uniform charge distribution, the charge enclosed is 

⎞ ⎛ ⎞  
∫ ⎛

⎜ 
4
3 ⎟ a

r3

3qenc = ρ dV = ρV = ρ  π  r3 =Q ⎜ ⎟  (4.2.25) 
V ⎝ ⎠ ⎝ ⎠  

which is proportional to the volume enclosed by the Gaussian surface. Applying Gauss’s 
law Φ = q / ε , we obtainE enc 0 

E 4π r 2 = π r3(  ) ε
ρ 

0 ⎝
⎜
⎛ 

3
4 

⎠⎟
⎞ 
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or 

E = 
3 
ρ
ε 
r 

0 

= 
4πε  

Qr 

0a
3 , r a  ≤  (4.2.26) 

Case 2: r a .≥ 

In this case, our Gaussian surface is a sphere of radius r a , as shown in Figure≥ 
4.2.15(b). Since the radius of the Gaussian surface is greater than the radius of the sphere 
all the charge is enclosed in our Gaussian surface: qenc = Q . With the electric flux 
through the Gaussian surface given by Φ =  E(4π r 2 ) , upon applying Gauss’s law, weE 

obtain (4π 2 ) = Q / ε0E r  , or 

Q QE = = k , r a  >  (4.2.27)
4πε0r

2 e r2 

The field outside the sphere is the same as if all the charges were concentrated at the 
center of the sphere. The qualitative behavior of E as a function of r is plotted in Figure 
4.2.16. 

Figure 4.2.16 Electric field due to a uniformly charged sphere as a function of r . 
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Module 9: Conductors and Insulators 

4.3  Conductors 

An insulator such as glass or paper is a material in which electrons are attached to some 
particular atoms and cannot move freely. On the other hand, inside a conductor, electrons 
are free to move around. The basic properties of a conductor are the following: 

(1) The electric field is zero inside a conductor.  

ru

If we place a solid spherical conductor in a constant external field E0 , the positive and 

r 
ru 

negative charges will move toward the polar regions of the sphere (the regions on the left 
and right of the sphere in Figure 4.3.1 below), thereby inducing an electric field E′ 

r . 

Inside the conductor, E′ points in the opposite direction of E0 

r
. Since charges are mobile, 

ru

they will continue to move until 
electrostatic equilibrium, E must vanish inside a conductor. Outside the conductor, the 

r 
r 

E′  completely cancels E0 inside the conductor. At 

electric field E′

r

due to the induced charge distribution corresponds to a dipole field, and
ur ur

the total electric field is simply = 0 E′.E E  +  The field lines are depicted in Figure 4.3.1.     

ur 
Figure 4.3.1 Placing a conductor in a uniform electric field E0 . 

(2) Any net charge must reside on the surface.  

ur
If there were a net charge inside the conductor, then by Gauss’s law (Eq. 4.3.2), E would 
no longer be zero there. Therefore, all the net excess charge must flow to the surface of 
the conductor. 

Figure 4.3.2 Gaussian surface inside a conductor. The enclosed charge is zero. 
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r 
(3) The tangential component of E is zero on the surface of a conductor. 

We have already seen that for an isolated conductor, the electric field is zero in its 
interior. Any excess charge placed on the conductor must then distribute itself on the 
surface, as implied by Gauss’s law. 

Consider the line integral Ñ∫
r 
⋅d 

r 
around a closed path shown in Figure 4.3.3:E s  

Figure 4.3.3 Normal and tangential components of electric field outside the conductor 

ur
Since the electric field E  is conservative, the line integral around the closed path abcda 
vanishes: 

ur r
Ñ∫ E s  = Et ( )Δ −  l En (Δ  + Δ +  ')  0 (  l ') En (Δx) 0⋅d x = 

abcda 

where Et and En are the tangential and the normal components of the electric field, 
respectively, and we have oriented the segment ab so that it is parallel to Et. In the limit 
where both Δx and x E l 0. ' 0, tΔ =  However, since the length element Δl isΔ →  we have 

finite, we conclude that the tangential component of the electric field on the surface of a 
conductor vanishes: 

Et = 0 (on the surface of a conductor) (4.3.1) 

This implies that the surface of a conductor in electrostatic equilibrium is an 
equipotential surface. To verify this claim, consider two points A and B on the surface of 
a conductor. Since the tangential component Et = 0,  the potential difference is 

B ur rVB −VA = − 
A 
⋅d = 0∫ E s  

because E 
r 

is perpendicular to d s r . Thus, points A and B are at the same potential with 
VA =VB . 
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ur
(4) E  is normal to the surface just outside the conductor.  

ru

If the tangential component of E is initially non-zero, charges will then move around 
until it vanishes. Hence, only the normal component survives. 

Figure 4.3.3 Gaussian “pillbox” for computing the electric field outside the conductor.  

To compute the field strength just outside the conductor, consider the Gaussian pillbox 
drawn in Figure 4.3.3. Using Gauss’s law, we obtain 

0 

EΦ =  
S 

Ò
r 
⋅ d 

r 
∫∫ E A  = E  A  + (0) ⋅ A = n ε0 

σ A (4.3.2) 

or 

nE = σ 
ε 

(4.3.3) 

The above result holds for a conductor of arbitrary shape. The pattern of the electric field 
line directions for the region near a conductor is shown in Figure 4.3.4.  

ru

Figure 4.3.4 Just outside the conductor, E is always perpendicular to the surface. 

As in the examples of an infinitely large non-conducting plane and a spherical shell, the 
normal component of the electric field exhibits a discontinuity at the boundary: 
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( )+ ( )  σ σΔE = E − E − = − 0 = n n n ε0 ε0 

Example 4.5: Conductor with Charge Inside a Cavity 

Consider a hollow conductor shown in Figure 4.3.5 below. Suppose the net charge 
carried by the conductor is +Q. In addition, there is a charge q inside the cavity. What is 
the charge on the outer surface of the conductor? 

Figure 4.3.5 Conductor with a cavity 

Since the electric field inside a conductor must be zero, the net charge enclosed by the 
Gaussian surface shown in Figure 4.3.5 must be zero. This implies that a charge –q must 
have been induced on the cavity surface. Since the conductor itself has a charge +Q, the 
amount of charge on the outer surface of the conductor must be Q q.+ 

Example 4.6: Electric Potential Due to a Spherical Shell 

Consider a metallic spherical shell of radius a and charge Q, as shown in Figure 4.3.6. 

Figure 4.3.6 A spherical shell of radius a and charge Q. 

(a) Find the electric potential everywhere. 

(b) Calculate the potential energy of the system. 
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Solution: 

(a) In Example 4.3, we showed that the electric field for a spherical shell of is given by 

⎧ Q
⎪ 2 r̂, r ar > 

E = ⎨ 4πε0r 

⎩ <⎪ 0, r a  

The electric potential may be calculated by using Eq. (3.1.9): 

B ur rVB −VA = −  ⋅d∫ E s  
A 

For r > a, we have 

( )  V ( )  r Q 
2 dr  ′ = 

1 Q = ke 
Q (4.3.4)V r  − ∞ = −  ∫∞ 4πε0r′ 4πε0 r r 

where we have chosen V ( ) ∞ = 0 as our reference point. On the other hand, for r < a, the 
potential becomes 

( )  − ∞ = −  ∫∞ 

a 

∫a
r (V r  V  ( )  drE  ( r > a )− E r < a ) 

a Q 1 Q Q (4.3.5)
= −∫∞ 

dr 
4πε0r

2 = 
4πε0 a 

= ke a 

A plot of the electric potential is shown in Figure 4.3.7. Note that the potential V is 
constant inside a conductor. 

Figure 4.3.7 Electric potential as a function of r for a spherical conducting shell 

(b) The potential energy U can be thought of as the work that needs to be done to build 
up the system. To charge up the sphere, an external agent must bring charge from infinity 
and deposit it onto the surface of the sphere. 
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Suppose the charge accumulated on the sphere at some instant is q. The potential at the 
surface of the sphere is then V q= / 4πε0a . The amount of work that must be done by an 
external agent to bring charge dq  from infinity and deposit it on the sphere is 

⎛ q ⎞
dWext =Vdq = ⎜ ⎟dq (4.3.6)

⎝ 4πε0a ⎠

Therefore, the total amount of work needed to charge the sphere to Q is 

Wext = ∫
Q

dq  q = 
Q2 

(4.3.7)
0 4πε0a 8πε0a 

Since V Q= / 4πε0a and Wex t = U , the above expression is simplified to  

1U = QV  (4.3.8)
2 

The result can be contrasted with the case of a point charge. The work required to bring a 
point charge Q from infinity to a point where the electric potential due to other charges is 
V would be Wex t = QV  . Therefore, for a point charge Q, the potential energy is U=QV. 

Now, suppose two metal spheres with radii r1  and r2 are connected by a thin conducting 
wire, as shown in Figure 4.3.8. 

Figure 4.3.8 Two conducting spheres connected by a wire. 

Charge will continue to flow until equilibrium is established such that both spheres are at 
the same potential V V  =V .1 = 2 Suppose the charges on the spheres at equilibrium are q1 

and q2 . Neglecting the effect of the wire that connects the two spheres, the equipotential 
condition implies 

V = 
0 

1 
4πε 

1 

1 

q 
r 
= 

0 

1 
4πε 

2 

2 

q 
r 

or 
1q = 2q (4.3.9) 
1r 2r 
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assuming that the two spheres are very far apart so that the charge distributions on the 
surfaces of the conductors are uniform. The electric fields can be expressed as 

E1 = 
1 q1

2 =
σ1 , E2 = 

1 q 
2
2 = σ 2 (4.3.10)

4πε0 1 r ε0 4πε 0 r2 ε0 

where σ1 and σ 2 are the surface charge densities on spheres 1 and 2, respectively. The 
two equations can be combined to yield 

E1 = σ1 = r2 (4.3.11)
E2 σ 2 r1 

With the surface charge density being inversely proportional to the radius, we conclude 
that the regions with the smallest radii of curvature have the greatest σ . Thus, the 
electric field strength on the surface of a conductor is greatest at the sharpest point. The 
design of a lightning rod is based on this principle. 

4.4  Force on a Conductor 

We have seen that at the boundary surface of a conductor with a uniform charge density σ, 
the tangential component of the electric field is zero, and hence, continuous, while the 
normal component of the electric field exhibits discontinuity, with ΔEn = / 0σ ε  . Consider 
a small patch of charge on a conducting surface, as shown in Figure 4.4.1.  

Figure 4.4.1 Force on a conductor 

What is the force experienced by this patch? To answer this question, let’s write the total 
electric field anywhere outside the surface as 

r r r
E = E  patch + E′ (4.4.1) 

r r 
where Epatch is the electric field due to charge on the patch, and E′ is the electric field due 
to all other charges. Since by Newton’s third law, the patch cannot exert a force on itself, 
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r 
the force on the patch must come solely from E′ . Assuming the patch to be a flat surface, 
from Gauss’s law, the electric field due to the patch is 

⎧ σ 
⎪+ k̂, z > 0 

r ⎪ 2ε0
Epatch = ⎨ (4.4.2) 

⎪− σ k̂, z < 0
⎪ 2ε⎩ 0 

By superposition principle, the electric field above the conducting surface is 

r r
Eabove = ⎜

⎛ 
2 
σ
ε ⎟
⎞
k̂ +E′ (4.4.3)

⎝ 0 ⎠ 

Similarly, below the conducting surface, the electric field is   

E 
r 

below = −⎜
⎛ σ 

⎟
⎞
k̂ +E 

r
′ (4.4.4)

⎝ 2ε0 ⎠ 

r 
Notice that E′ is continuous across the boundary. This is due to the fact that if the patch 
were removed, the field in the remaining “hole” exhibits no discontinuity. Using the two 
equations above, we find 

E 
r 
′ = 

1 (E 
r 

above +E 
r 

below ) = E  
r

avg (4.4.5)
2 

r r 
In the case of a conductor, with Eabove = ( / 0 k̂ and Ebelow = 0σ ε ) , we have 

E 
r

avg = 
1
2 ⎜⎝

⎛
ε
σ 

0 

k̂ + 0⎟
⎠

⎞ 
= 

2 
σ
ε0 

k̂ (4.4.6) 

Thus, the force acting on the patch is 

r r σ ˆ σ 2 A ˆF = qEavg = (σ A) k =  k  (4.4.7)
2ε0 2ε0 

where A is the area of the patch.  This is precisely the force needed to drive the charges 
on the surface of a conductor to an equilibrium state where the electric field just outside 
the conductor takes on the value / 0σ ε and vanishes inside. Note that irrespective of the 
sign of σ, the force tends to pull the patch into the field.   

Using the result obtained above, we may define the electrostatic pressure on the patch as 
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2 

P = 
F = σ 2 

= 
1 ε0 

⎛
⎜
σ ⎞
⎟ = 

1 ε0 E
2 (4.4.8)

A 2ε0 2 ⎝ ε0 ⎠ 2 

where E is the magnitude of the field just above the patch. The pressure is being 
transmitted via the electric field. 
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4.5 Summary 

• The electric flux that passes through a surface characterized by the area vector 
r
A = An̂ is 

r r 
Φ =  ⋅ EAcosE A  = θE 

r 
where θ  is the angle between the electric field E and the unit vector n̂ . 

•	 In general, the electric flux through a surface is 

r	 r 
Φ = dE AE ∫∫ ⋅

S 

•	 Gauss’s law states that the electric flux through any closed Gaussian surface is 
proportional to the total charge enclosed by the surface: 

ur r

E Ò∫∫ E A  = qenc
Φ =  ⋅d 

εS 0 

Gauss’s law can be used to calculate the electric field for a system that possesses 
planar, cylindrical or spherical symmetry.  

•	 The normal component of the electric field exhibits discontinuity, with 
ΔEn = / 0σ ε , when crossing a boundary with surface charge density σ. 

• The basic properties of a conductor are (1) The electric field inside a conductor is 
zero; (2) any net charge must reside on the surface of the conductor; (3) the 
surface of a conductor is an equipotential surface, and the tangential component 
of the electric field on the surface is zero; and (4) just outside the conductor, the 
electric field is normal to the surface. 

•	 Electrostatic pressure on a conducting surface is 

⎛ ⎞  F σ 2 1 σ 
2

1 2P = = = ε0 ⎜  ⎟ = ε0 EA 2ε0 2 ε0 2⎝ ⎠  

4.6 Appendix: Tensions and Pressures 
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In Section 4.4, the pressure transmitted by the electric field on a conducting surface was 
derived. We now consider a more general case where a closed surface (an imaginary box) 
is placed in an electric field, as shown in Figure 4.6.1.  

If we look at the top face of the imaginary box, there is an electric field pointing in the 
outward normal direction of that face. From Faraday’s field theory perspective, we would 
say that the field on that face transmits a tension along itself across the face, thereby 
resulting in an upward pull, just as if we had attached a string under tension to that face 
to pull it upward. Similarly, if we look at the bottom face of the imaginary box, the field 
on that face is anti-parallel to the outward normal of the face, and according to Faraday’s 
interpretation, we would again say that the field on the bottom face transmits a tension 
along itself, giving rise to a downward pull, just as if a string has been attached to that 
face to pull it downward. (The actual determination of the direction of the force requires 
an advanced treatment using the Maxwell’s stress tensor.) Note that this is a pull parallel 
to the outward normal of the bottom face, regardless of whether the field is into the 
surface or out of the surface.  

Figure 4.6.1 An imaginary box in an electric field (long orange vectors).  The short 
vectors indicate the directions of stresses transmitted by the field, either pressures (on the 
left or right faces of the box) or tensions (on the top and bottom faces of the box). 

For the left side of the imaginary box, the field on that face is perpendicular to the 
outward normal of that face, and Faraday would have said that the field on that face 
transmits a pressure perpendicular to itself, causing a push to the right. Similarly, for the 
right side of the imaginary box, the field on that face is perpendicular to the outward 
normal of the face, and the field would transmit a pressure perpendicular to itself.  In this 
case, there is a push to the left. 

Note that the term “tension” is used when the stress transmitted by the field is parallel (or 
anti-parallel) to the outward normal of the surface, and “pressure” when it is 
perpendicular to the outward normal.  The magnitude of these pressures and tensions on 
the various faces of the imaginary surface in Figure 4.6.1 is given by ε0 E

2 / 2  for the 
electric field.  This quantity has units of force per unit area, or pressure.  It is also the 
energy density stored in the electric field since energy per unit volume has the same units 
as pressure.   
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4.6.1 Charged Particle Moving in a Constant Electric Field Animation  

As an example of the stresses transmitted by electric fields, and of the interchange of 
energy between fields and particles, consider a positive electric charge q > 0 moving in a 
constant electric field (link). 

Suppose the charge is initially moving upward along the positive z-axis in a constant 
background field E 

r 
= −E0k̂ . Since the charge experiences a constant downward force 

F 
r 

e = qE 
r 
= −  qE  0k̂ , it eventually comes to rest (say, at the origin z = 0), and then moves 

back down the negative z-axis. This motion and the fields that accompany it are shown 
in Figure 4.6.2, at two different times.   

(a) (b) 

Figure 4.6.2 A positive charge moving in a constant electric field which points 
downward (link). (a) The total field configuration when the charge is still out of sight on 
the negative z-axis. (b) The total field configuration when the charge comes to rest at the 
origin, before it moves back down the negative z-axis.   

How do we interpret the motion of the charge in terms of the stresses transmitted by the 
fields?  Faraday would have described the downward force on the charge in Figure 
4.6.2(b) as follows: Let the charge be surrounded by an imaginary sphere centered on it, 
as shown in Figure 4.6.3. The field lines piercing the lower half of the sphere transmit a 
tension that is parallel to the field. This is a stress pulling downward on the charge from 
below. The field lines draped over the top of the imaginary sphere transmit a pressure 
perpendicular to themselves. This is a stress pushing down on the charge from above. The 
total effect of these stresses is a net downward force on the charge.  
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Figure 4.6.3 An electric charge in a constant downward electric field.  We surround the 
charge by an imaginary sphere in order to discuss the stresses transmitted across the 
surface of that sphere by the electric field. 

Viewing the animation of Figure 4.6.2 (link) greatly enhances Faraday’s interpretation of 
the stresses in the static image.  As the charge moves upward, it is apparent in the 
animation that the electric field lines are generally compressed above the charge and 
stretched below the charge. This field configuration enables the transmission of a 
downward force to the moving charge we can see as well as an upward force to the 
charges that produce the constant field, which we cannot see. The overall appearance of 
the upward motion of the charge through the electric field is that of a point being forced 
into a resisting medium, with stresses arising in that medium as a result of that 
encroachment.  

The kinetic energy of the upwardly moving charge is decreasing as more and more 
energy is stored in the compressed electrostatic field, and conversely when the charge is 
moving downward. Moreover, because the field line motion in the animation is in the 
direction of the energy flow, we can explicitly see the electromagnetic energy flow away 
from the charge into the surrounding field when the charge is slowing. Conversely, we 
see the electromagnetic energy flow back to the charge from the surrounding field when 
the charge is being accelerated back down the z-axis by the energy released from the 
field. 

Finally, consider momentum conservation.  The moving charge in the animation of 
Figure 4.6.2 completely reverses its direction of motion over the course of the animation. 
How do we conserve momentum in this process?  Momentum is conserved because 
momentum in the positive z-direction is transmitted from the moving charge to the 
charges that are generating the constant downward electric field (not shown).  This is 
obvious from the field configuration shown in Figure 4.6.3.  The field stress, which 
pushes downward on the charge, is accompanied by a stress pushing upward on the 
charges generating the constant field.   

4.6.2 Charged Particle at Rest in a Time-Varying Field Animation 

As a second example of the stresses transmitted by electric fields, consider a positive 
point charge sitting at rest at the origin in an external field which is constant in space but 
varies in time (link). This external field is uniform varies according to the equation 

E 
r
= −E0 sin 4 

⎜
⎛ 2π t 

⎟
⎞ k̂ (4.6.1)

⎝ T ⎠ 
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 (a) (b) 

Figure 4.6.4 Two frames of an animation (link) of the electric field around a positive 
charge sitting at rest in a time-changing electric field that points downward.  The orange 
vector is the electric field and the white vector is the force on the point charge.   

Figure 4.6.4 shows two frames of an animation of the total electric field configuration for 
this situation. Figure 4.6.4(a) is at t = 0, when the vertical electric field is zero.  Frame 
4.6.4(b) is at a quarter period later, when the downward electric field is at a maximum. 
As in Figure 4.6.3 above, we interpret the field configuration in Figure 4.6.4(b) as 
indicating a net downward force on the stationary charge.  The animation of Figure 4.6.4 
shows dramatically the inflow of energy into the neighborhood of the charge as the 
external electric field grows in time, with a resulting build-up of stress that transmits a 
downward force to the positive charge.   

We can estimate the magnitude of the force on the charge in Figure 4.6.4(b) as follows. 
At the time shown in Figure 4.6.4(b), the distance r0 above the charge at which the 
electric field of the charge is equal and opposite to the constant electric field is 
determined by the equation 

E0 = 4π ε  
q 

0 0r 2 (4.6.2) 

The surface area of a sphere of this radius is A =4π r0
2 = q / ε0 E0 . Now according to Eq. 

(4.4.8) the pressure (force per unit area) and/or tension transmitted across the surface of 
this sphere surrounding the charge is of the order of ε0 E

2 / 2  . Since the electric field on 
the surface of the sphere is of order E0 , the total force transmitted by the field is of order 

times the area of the sphere, or /  2)(4  q ε E ) ≈ qE  , asε E 2 / 2  (ε E 2 π r 2 ) = (ε E 2 / 2)(  /  0 0  0 0  0 0 0  0 0 0  

we expect. 

Of course this net force is a combination of a pressure pushing down on the top of the 
sphere and a tension pulling down across the bottom of the sphere. However, the rough 
estimate that we have just made demonstrates that the pressures and tensions transmitted 
across the surface of this sphere surrounding the charge are plausibly of order ε0 E

2 / 2 , as 
we claimed in Eq. (4.4.8). 
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4.6.3 Like and Unlike Charges Hanging from Pendulums Animation 

Consider two charges hanging from pendulums whose supports can be moved closer or 
further apart by an external agent. First, suppose the charges both have the same sign, 
and therefore repel. 

Figure 4.6.5 Two pendulums from which are suspended charges of the same sign (link). 

Figure 4.6.5 shows the situation when an external agent tries to move the supports (from 
which the two positive charges are suspended) together.  The force of gravity is pulling 
the charges down, and the force of electrostatic repulsion is pushing them apart on the 
radial line joining them.  The behavior of the electric fields in this situation is an example 
of an electrostatic pressure transmitted perpendicular to the field.  That pressure tries to 
keep the two charges apart in this situation, as the external agent controlling the 
pendulum supports tries to move them together. When we move the supports together the 
charges are pushed apart by the pressure transmitted perpendicular to the electric field. 
We artificially terminate the field lines at a fixed distance from the charges to avoid 
visual confusion. 

In contrast, suppose the charges are of opposite signs, and therefore attract.  Figure 4.6.6 
shows the situation when an external agent moves the supports (from which the two 
positive charges are suspended) together.  The force of gravity is pulling the charges 
down, and the force of electrostatic attraction is pulling them together on the radial line 
joining them. The behavior of the electric fields in this situation is an example of the 
tension transmitted parallel to the field.  That tension tries to pull the two unlike charges 
together in this situation. 

Figure 4.6.6 Two pendulums with suspended charges of opposite sign (link). 
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When we move the supports together the charges are pulled together by the tension 
transmitted parallel to the electric field.  We artificially terminate the field lines at a fixed 
distance from the charges to avoid visual confusion. 

4.7 Problem-Solving Strategies 

In this chapter, we have shown how electric field can be computed using Gauss’s law: 

enc Φ =  Ò∫∫ E 
ur 
⋅ d A 

r 
= 

q 
E εS 0 

The procedures are outlined in Section 4.2. Below we summarize how the above 
procedures can be employed to compute the electric field for a line of charge, an infinite 
plane of charge and a uniformly charged solid sphere.  
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System Infinite line of 
charge 

Infinite plane of 
charge 

Uniformly charged 
solid sphere

  Figure 

Identify the 
symmetry  Cylindrical Planar Spherical 

Determine the 
direction of E 

r 

Divide the space 
into different 
regions 

r 0> z 0>  and z 0< r a≤  and r a≥ 

Choose Gaussian 
surface 

Coaxial cylinder 

Gaussian pillbox 
Concentric sphere 

Calculate electric 
flux 

(2 )E E rπ lΦ =  2E EA EA  EAΦ =  +  =  2(4 )E E rπΦ =  

Calculate enclosed 
charge inq encq lλ= encq Aσ= 

3 

enc 
( /  )Q r a  r a  

q 
Q  r a  
⎧ ≤ 

= ⎨ 
≥⎩ 

Apply Gauss’s law 

in 0/E q εΦ =  to 
find E 02 

E 
r 

λ 
πε 

= 
02 

E σ 
ε 

= 
3 

0 

2 
0 

,
4 

,
4 

Qr r a  
a

E 
Q r a  

r 

πε 

πε 

⎧ ≤⎪⎪ = ⎨ 
⎪ ≥
⎪⎩ 
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4.8  Solved Problems 

4.8.1 Two Parallel Infinite Non-Conducting Planes  

Two parallel infinite non-conducting planes lying in the xy-plane are separated by a 
distance d . Each plane is uniformly charged with equal but opposite surface charge 
densities, as shown in Figure 4.8.1. Find the electric field everywhere in space. 

Figure 4.8.1 Positive and negative uniformly charged infinite planes 

Solution: 

The electric field due to the two planes can be found by applying the superposition 
principle to the result obtained in Example 4.2 for one plane. Since the planes carry equal 
but opposite surface charge densities, both fields have equal magnitude: 

σE+ = E− = 
2ε0 

The field of the positive plane points away from the positive plane and the field of the 
negative plane points towards the negative plane (Figure 4.8.2) 

Figure 4.8.2 Electric field of positive and negative planes 

Therefore, when we add these fields together, we see that the field outside the parallel 
planes is zero, and the field between the planes has twice the magnitude of the field of 
either plane. 
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Figure 4.8.3 Electric field of two parallel planes 

The electric field of the positive and the negative planes are  given by  

E 
r 
+ = 

⎪
⎨
⎪
⎧ 

2 
σ
ε0 

ˆ , z d / 2  
, E 

r 
− = 

⎪
⎨
⎪
⎧− 

2 
σ
ε0 

k̂, z > −  d / 2  + k > 

⎪ σ ˆ , z d / 2  ⎪+ 
σ k̂, z < −  d / 2  − k <

⎪ 2ε ⎪ 2ε⎩ 0 ⎩ 0 

Adding these two fields together then yields  

⎧0 ,ˆ z d / 2  k >
⎪ 

r ⎪ σE = −  k̂, d / 2  > z > −  d /  2  (4.8.1)⎨ 
⎪ ε0 

⎪0 ,ˆ z d / 2  ⎩ k < −  

Note that the magnitude of the electric field between the plates is / 0 , which isE = σ ε  
twice that of a single plate, and vanishes in the regions > / 2 and < −d / 2 .z d z

4.8.2 Electric Flux Through a Square Surface 

(a) Compute the electric flux through a square surface of edges 2l due to a charge +Q 
located at a perpendicular distance l from the center of the square, as shown in Figure 
4.8.4. 

Figure 4.8.4 Electric flux through a square surface 

4-34 



(b) Using the result obtained in (a), if the charge +Q is now at the center of a cube of side 
2l (Figure 4.8.5), what is the total flux emerging from all the six faces of the closed 
surface? 

Figure 4.8.5 Electric flux through the surface of a cube  

Solutions: 

(a) The electric field due to the charge +Q is 

E 
r 
= 

1 Q 
2 r̂= 1 Q 

2 ⎜
⎛ x î + ŷj + zk̂ 

⎟
⎞ 

4πε0 r 4πε0 r ⎝ r ⎠ 

where r = (x2 + y2 + z2 )1/  2  in Cartesian coordinates. On the surface S, y l and the area= 
r ˆ ˆ ˆ ˆ ˆ  ̂  ˆ ˆ  1element is dA = dA  j = (dx dz)j . Since ⋅ ⋅ 0and j j = , we havei j = j  k  = ⋅

r 
⋅ d 
r 
= 

4πε 
Q 

0r
2 
⎝

⎛
⎜ 

x î + y
r
ĵ + zk̂ 

⎠

⎞
⎟ ⋅ (dx dz )̂j =  

4πε 
Q

0 

l
r3 dx dzE A  

Thus, the electric flux through S is 

l 
r r Ql l l dz Ql l z 

Φ =  ⋅  d dx = dxE ∫∫ E A =  
−l ∫ 2 l 2  2 3 2  4 − 2 2Ò 4πε ∫ −l (x + +  z ) / πε ∫ l 2 + 

2 2 2 1 /
S 0 0 (x l )(  x l+ + z ) −l 

l 
Ql l l dx Q ⎛ ⎞


= 
2πε0 
∫−l (x2 + l 2 )(  x2 + 2l2 )1/2  = 

2πε0 
tan 

−1 ⎜⎜⎝ x2 

x 
+ 2l2 

⎟⎟⎠
−l


= 
Q ⎡tan −1(1 / 3) − tan −1( −1 / 3) ⎤ = 

Q


2πε0 
⎣ ⎦ 6ε0 

where the following integrals have been used: 
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dx x =
∫ (x2 + a2 )3/ 2  a2 (x2 + a2 )1/ 2 


∫ (x2 + a2 )(  
dx
x2 + b2 )1/ 2  = 

( 2 − 

1 
a2 )1/  2  tan −1 

a2 

b 
(

2 

2 

− a2

2 , b2 > a2 

a b  x  + b ) 

(b) From symmetry arguments, the flux through each face must be the same. Thus, the 
total flux through the cube is just six times that through one face: 

⎛ Q ⎞ QΦ = 6 = E 
⎝
⎜ 6ε0 ⎠

⎟ ε0 

The result shows that the electric flux ΦE passing through a closed surface is 
proportional to the charge enclosed. In addition, the result further reinforces the notion 
that ΦE  is independent of the shape of the closed surface.  

4.8.3 Gauss’s Law for Gravity 

What is the gravitational field inside a spherical shell of radius a  and mass m ? 

Solution: 

Since the gravitational force is also an inverse square law, there is an equivalent Gauss’s 
law for gravitation: 

Φ = −4πGm (4.8.2)g enc 

The only changes are that we calculate gravitational flux, the constant 1/ ε0 →−4πG , 
and qenc →menc ≤ , the mass enclosed in a Gaussian surface is zero because the . For r a
mass is all on the shell. Therefore the gravitational flux on the Gaussian surface is zero. 
This means that the gravitational field inside the shell is zero! 

4.8.4 Electric Potential of a Uniformly Charged Sphere 

An insulated solid sphere of radius a has a uniform charge density ρ. Compute the 
electric potential everywhere.  

Solution: 
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Using Gauss’s law, we showed in Example 4.4 that the electric field due to the charge 
distribution is 

⎧	 Q >⎪ 2 r̂, r a  
r	 ⎪ 4πε0rE = ⎨ (4.8.3) 

⎪ Qr 
3 r̂, r a<

⎪⎩ 4πε0a 

Figure 4.8.6 

The electric potential at P1 (indicated in Figure 4.8.6) outside the sphere is 

r
V r  V  ( )  ( )  Q dr′ = 

1 Q = k Q (4.8.4)1 − ∞ = −  ∫∞ 4πε0r′
2 4πε0 r e r 

On the other hand, the electric potential at P2  inside the sphere is given by 

− ∞ = −  ( )  ∫ dr ( > )− ∫ E r  a  ) =  −  ∫ r 
4πε0r

2 − ∫ r′ 
4πε0a

3( )  
a

E r a  
r ( < 

a
d Q r

d Qr r′V r  V  2	 ∞ a ∞ a 

= 
4πε	

1

0 

Q
a 
− 

4πε 
1

0 a
Q 

3 

1
2 (r

2 − a2 ) = 
8πε 

1

0 

Q
a ⎜⎝

⎛
3 − 

a
r2

2 ⎟
⎠

⎞ 
(4.8.5) 

Q ⎛ r2 ⎞ 
= ke ⎜3 − 2 ⎟2a ⎝ a ⎠ 

A plot of electric potential as a function of r is given in Figure 4.8.7: 

Figure 4.8.7  Electric potential due to a uniformly charged sphere as a function of r. 
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4.9 Conceptual Questions 

1.	 If the electric field in some region of space is zero, does it imply that there is no 
electric charge in that region?   

2.	 Consider the electric field due to a non-conducting infinite plane having a uniform 
charge density. Why is the electric field independent of the distance from the plane? 
Explain in terms of the spacing of the electric field lines. 

3.	 If we place a point charge inside a hollow sealed conducting pipe, describe the 
electric field outside the pipe. 

4.	 Consider two isolated spherical conductors each having net charge Q > 0 . The 
spheres have radii a and b, where b>a. Which sphere has the higher potential? 
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