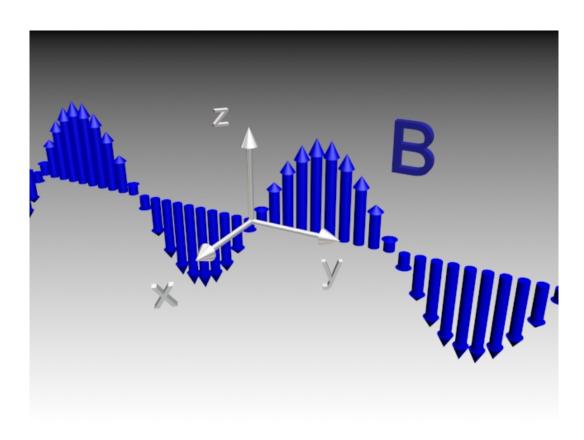


The E field of a plane EM wave is

$$\mathbf{E}(z,t) = \hat{\mathbf{j}}E_0 \sin(kz + \omega t)$$

The magnetic field of this wave is given by


1.
$$\mathbf{B}(z,t) = \hat{\mathbf{i}}B_0 \sin(kz + \omega t)$$

2.
$$\mathbf{B}(z,t) = -\hat{\mathbf{i}}B_0\sin(kz + \omega t)$$

3.
$$\mathbf{B}(z,t) = \hat{\mathbf{k}}B_0 \sin(kz + \omega t)$$

4.
$$\mathbf{B}(z,t) = -\hat{\mathbf{k}}B_0\sin(kz + \omega t)$$

5. Don't Have A Clue

The B field of a plane EM wave is

$$\mathbf{B}(y,t) = \hat{\mathbf{k}}B_0 \sin(ky - \omega t)$$

The electric field of this wave is given by

1.
$$\mathbf{E}(y,t) = \hat{\mathbf{j}}E_0 \sin(ky - \omega t)$$

2.
$$\mathbf{E}(y,t) = -\hat{\mathbf{j}}E_0\sin(ky - \omega t)$$

3.
$$\mathbf{E}(y,t) = \hat{\mathbf{i}}E_0 \sin(ky - \omega t)$$

4.
$$\mathbf{E}(y,t) = -\hat{\mathbf{i}}E_0\sin(ky - \omega t)$$

5. Don't Have A Clue