Class 32: Outline

```
Hour 1:
```

Generating Electromagnetic Waves
Plane EM Waves
Electric Dipole EM Waves

Hour 2:

Experiment 12: Microwaves

Review Exam 3 Results

Recall: Electromagnetic Radiation

Recall Electromagnetic Radiation: Plane Waves

Properties of EM Waves

Travel (through vacuum) with

speed of light
$$v = c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \frac{m}{s}$$

At every point in the wave and any instant of time, E and B are in phase with one another, with

$$\frac{E}{B} = \frac{E_0}{B_0} = c$$

E and B fields perpendicular to one another, and to the direction of propagation (they are transverse):

Direction of propagation = Direction of $\vec{\mathbf{E}} \times \vec{\mathbf{B}}$

Generating Plane Electromagnetic Radiation

Shake A Sheet of Charge Up and Down

Java Applet for Generation of Plane Waves

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/light/09-planewaveapp/09-planewaveapp320.html

First Pull The Sheet of Charge Down At Speed v

$$\tan \theta = \frac{E_1}{E_0} = \frac{vT}{cT} = \frac{v}{c}$$

$$\vec{\mathbf{E}}_1 = \left(\frac{v}{c}E_0\right)\hat{\mathbf{j}} = \left(\frac{v\sigma}{2\varepsilon_0c}\right)\hat{\mathbf{j}}$$

When you pull down, there is a back force up!

Rate of Work Done?

$$d\vec{\mathbf{F}}_e = dq\vec{\mathbf{E}}_1 = (\sigma dA) \left(\frac{v\sigma}{2\varepsilon_0 c} \right) \hat{\mathbf{j}} = \left(\frac{v\sigma^2 dA}{2\varepsilon_0 c} \right) \hat{\mathbf{j}}$$

$$d\vec{\mathbf{F}}_{\text{ext}} = -d\vec{\mathbf{F}}_{e} = -\left(\frac{v\sigma^{2}dA}{2\varepsilon_{0}c}\right)\hat{\mathbf{j}}$$

$$\frac{d^2W_{\text{ext}}}{dA\,dt} = \frac{d\vec{\mathbf{F}}_{\text{ext}}}{dA} \cdot \frac{d\vec{\mathbf{s}}}{dt} = \left(-\frac{v\sigma^2}{2\varepsilon_0 c}\hat{\mathbf{j}}\right) \cdot \left(-v\hat{\mathbf{j}}\right) = \frac{v^2\sigma^2}{2\varepsilon_0 c}$$

What About B Field?

$$\vec{B} = 0 \quad \begin{array}{c|cccc}
 & \leftarrow cT \rightarrow & \leftarrow cT \rightarrow \\
 & \otimes \otimes \otimes & & & & & & & \\
 & \otimes \otimes \otimes & & & & & & & \\
 & \otimes \otimes \otimes & & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & \\
 & \otimes \otimes \otimes & & & & & \\
 & \otimes \otimes \otimes & & & & \\
 & \otimes \otimes \otimes & & & & \\
 & \otimes \otimes \otimes & & & & \\
 & \otimes \otimes \otimes & & & & \\
 & \otimes \otimes \otimes & & & & \\
 & \otimes \otimes \otimes & & & & \\
 & \otimes \otimes \otimes & & & & \\
 & \otimes \otimes \otimes & & & & \\
 & \otimes \otimes \otimes & & & & \\
 & \otimes \otimes \otimes & \\
 &$$

$$\vec{\mathbf{E}}_{1} = \left(\frac{v}{c}E_{0}\right)\hat{\mathbf{j}} = \left(\frac{v\sigma}{2\varepsilon_{0}c}\right)\hat{\mathbf{j}}$$

$$\vec{\mathbf{E}}_{1} = \left(\frac{v}{c}E_{0}\right)\hat{\mathbf{j}} = \left(\frac{v\sigma}{2\varepsilon_{0}c}\right)\hat{\mathbf{j}} \qquad \vec{\mathbf{B}}_{1} = \begin{cases} +(\mu_{0}\sigma v/2)\hat{\mathbf{k}}, & x > 0\\ -(\mu_{0}\sigma v/2)\hat{\mathbf{k}}, & x < 0 \end{cases}$$

Rate Energy Carried Away?

$$\vec{B} = 0 \quad \begin{array}{c|cccc}
 & \leftarrow cT \rightarrow & \leftarrow cT \rightarrow \\
 & \otimes \otimes \otimes & & & & & & & \\
 & \otimes \otimes \otimes & & & & & & & \\
 & \otimes \otimes \otimes & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & &$$

$$\vec{\mathbf{S}} = \frac{1}{\mu_0} \vec{\mathbf{E}}_1 \times \vec{\mathbf{B}}_1 = \frac{1}{\mu_0} \left(\frac{v\sigma}{2\varepsilon_0 c} \hat{\mathbf{j}} \right) \times \left(\frac{\mu_0 \sigma v}{2} \hat{\mathbf{k}} \right) = \left(\frac{v^2 \sigma^2}{4\varepsilon_0 c} \right) \hat{\mathbf{i}}$$

Energy radiated to left and right is exactly equal to the rate of work required to move sheet down

To generate plane wave, move sheet up and down sinusoidally

The work you do in moving the sheet is carried away as electromagnetic radiation, with 100% efficiency.

Generating Plane Wave Applet

PRS Question: Generating A Plane Wave

Generating Electric Dipole Electromagnetic Waves

Generating Electric Dipole Radiation Applet

Quarter-Wavelength Antenna

Accelerated charges are the source of EM waves. Most common example: Electric Dipole Radiation.

Why are Radio Towers Tall?

AM Radio stations have frequencies 535 – 1605 kHz. WLW 700 Cincinnati is at 700 kHz.

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8 \,\text{m/s}}{700 \times 10^3 \,\text{Hz}} = 429 \,\text{m}$$
$$\lambda / 4 \approx 107 \,\text{m} \approx 350 \,\text{ft}$$

The WLW 700 Cincinnati Tower is 747 ft tall

Quarter-Wavelength Antenna

Quarter-Wavelength Antenna

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/light/04-QuarterWaveAntenna/04-MicrowaveDLICS_320.html

Spark Gap Transmitter

Spark Gap Generator: An LC Oscillator

First: Example of "lumped" LC Oscillator (Capacitor & Inductor together as one)

Group Problem: Lumped LC Circuit

Question: What is the resonance frequency?

Recall:

$$C = \frac{\varepsilon_0 A}{d}$$
 $L = \frac{\Phi}{I}$

$$B_{\text{solenoid}} = \mu_o \left[\text{current per unit length} \right]$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

Our spark gap antenna

1) Charge gap (RC)

$$\tau = RC = (4.5 \times 10^{6} \,\Omega)(33 \times 10^{-12} \,\mathrm{F}) = 1.5 \times 10^{-4} \,\mathrm{s}$$

2) Breakdown! (LC)

$$f_{\text{rad}} = \frac{1}{T} = \frac{c}{4l} = \frac{3 \times 10^{10} \text{ cm/s}}{12.4 \text{ cm}}$$

$$= 2.4 \times 10^9 \text{ Hz} = 2.4 \text{ GHz}$$

3) Repeat

Spark Gap Transmitter

PRS Question: Spark Gap Antenna

Spark Gap Antenna

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/light/03-AntennaPattern/03-MicrowaveAntenna_320.html

Spark Gap Antenna

PRS Questions: Angular Distribution & Polarization of Radiation

Demonstration: Antenna

Polarization

Polarization of TV EM Waves

Why oriented as shown?

Why different lengths?

Demonstration: Microwave Polarization

Experiment 12: Measure Wavelength by Setting Up Standing Wave

Experiment 12: Microwaves

Exam 3 Results