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Direct-Current Circuits 
 
 
7.1 Introduction 
 
Electrical circuits connect power supplies to loads such as resistors, motors, heaters, or 
lamps. The connection between the supply and the load is made by soldering with wires 
that are often called leads, or with many kinds of connectors and terminals. Energy is 
delivered from the source to the user on demand at the flick of a switch. Sometimes many 
circuit elements are connected to the same lead, which is the called a common lead for 
those elements. Various parts of the circuits are called circuit elements, which can be in 
series or in parallel, as we have already seen in the case of capacitors. 
 
Elements are said to be in parallel when they are connected across the same potential 
difference (see Figure 7.1.1a).  
 

 
  

 
Figure 7.1.1 Elements connected (a) in parallel, and (b) in series. 

 
Generally, loads are connected in parallel across the power supply.  On the other hand, 
when the elements are connected one after another, so that the current passes through 
each element without any branches, the elements are in series (see Figure 7.1.1b).  
 
There are pictorial diagrams that show wires and components roughly as they appear, and 
schematic diagrams that use conventional symbols, somewhat like road maps. Some 
frequently used symbols are shown below: 
 

Voltage Source 
 

Resistor 
 

Switch 
 

 
Often there is a switch in series; when the switch is open the load is disconnected; when 
the switch is closed, the load is connected.  
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One can have closed circuits, through which current flows, or open circuits in which there 
are no currents. Usually by accident, wires may touch, causing a short circuit. Most of 
the current flows through the short, very little will flow through the load.  This may burn 
out a piece of electrical equipment such as a transformer. To prevent damage, a fuse or 
circuit breaker is put in series. When there is a short the fuse blows, or the breaker opens. 
 
In electrical circuits, a point (or some common lead) is chosen as the ground.  This point 
is assigned an arbitrary voltage, usually zero, and the voltage V at any point in the circuit 
is defined as the voltage difference between that point and ground. 
 
7.2 Electromotive Force 
 
In the last Chapter, we have shown that electrical energy must be supplied to maintain a 
constant current in a closed circuit. The source of energy is commonly referred to as the 
electromotive force, or emf (symbolε ). Batteries, solar cells and thermocouples are some 
examples of emf source.  They can be thought of as a “charge pump” that moves charges 
from lower potential to the higher one. Mathematically emf is defined as 
 

 dW
dq

ε ≡  (7.2.1) 

 
which is the work done to move a unit charge in the direction of higher potential. The SI 
unit for ε  is the volt (V).     
 
Consider a simple circuit consisting of a battery as the emf source and a resistor of 
resistance R, as shown in Figure 7.2.1.  
 

 
 

Figure 7.2.1 A simple circuit consisting of a battery and a resistor 
 
Assuming that the battery has no internal resistance, the potential difference  (or 
terminal voltage) between the positive and the negative terminals of the battery is equal 
to the emf 

V∆

ε . To drive the current around the circuit, the battery undergoes a discharging 
process which converts chemical energy to emf (recall that the dimensions of emf are the 
same as energy per charge). The current I can be found by noting that no work is done in 
moving a charge q around a closed loop due to the conservative nature of the electrostatic 
force: 
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 0W q d= − ⋅ =∫ E s  (7.2.2) 

 
Let point a in Figure 7.2.2 be the starting point.  
 

                             Figure 7.2.2 
 
When crossing from the negative to the positive terminal, the potential increases by ε . 
On the other hand, as we cross the resistor, the potential decreases by an amount IR , and 
the potential energy is converted into thermal energy in the resistor. Assuming that the 
connecting wire carries no resistance, upon completing the loop, the net change in 
potential difference is zero, 
 
 0IRε − =  (7.2.3) 
which implies  
 

 I
R
ε

=  (7.2.4) 

 
However, a real battery always carries an internal resistance r (Figure 7.2.3a), 
 

  
 
Figure 7.2.3 (a) Circuit with an emf source having an internal resistance r and a resistor 
of resistance R. (b) Change in electric potential around the circuit.  
 
and the potential difference across the battery terminals becomes 
 
 V Irε∆ = −  (7.2.5) 
 
Since there is no net change in potential difference around a closed loop, we have 
 
 0Ir IRε − − =  (7.2.6) 
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or 
 

 I
R r
ε

=
+

 (7.2.7) 

 
Figure 7.2.3(b) depicts the change in electric potential as we traverse the circuit 
clockwise. From the Figure, we see that the highest voltage is immediately after the 
battery. The voltage drops as each resistor is crossed. Note that the voltage is essentially 
constant along the wires. This is because the wires have a negligibly small resistance 
compared to the resistors. 
 
For a source with emf ε , the power or the rate at which energy is delivered is 
 
  (7.2.8) 2( )P I I IR Ir I R I rε= = + = + 2

 
That the power of the source emf is equal to the sum of the power dissipated in both the 
internal and load resistance is required by energy conservation.   
 
 
7.3 Resistors in Series and in Parallel 
 
The two resistors R1 and R2 in Figure 7.3.1 are connected in series to a voltage source V∆ .  
By current conservation, the same current I is flowing through each resistor.   
 

  
 

Figure 7.3.1 (a) Resistors in series. (b) Equivalent circuit. 
 
The total voltage drop from a to c across both elements is the sum of the voltage drops 
across the individual resistors: 
 
 ( )1 2 1 2V I R I R I R R∆ = + = +  (7.3.1) 
 
The two resistors in series can be replaced by one equivalent resistor eqR   (Figure 7.3.1b) 
with the identical voltage drop  which implies that eqV I R∆ =
 
 1eq 2R R R= +  (7.3.2) 
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The above argument can be extended to N resistors placed in series. The equivalent 
resistance is just the sum of the original resistances,  
 

 eq 1 2
1

N

i
i

R R R R
=

= + + =∑  (7.3.3) 

 
Notice that if one resistance R  is much larger than the other resistances 1 iR , then the 
equivalent resistance eqR  is approximately equal to the largest resistor . R1

 
Next let’s consider two resistors  and  that are connected in parallel across a voltage 
source  (Figure 7.3.2a).   

R1 R2

V∆
 

  
 

Figure 7.3.2 (a) Two resistors in parallel. (b) Equivalent resistance 
 
By current conservation, the current I that passes through the voltage source must divide 
into a current I1  that passes through resistor R  and a current 1 I2  that passes through 
resistor .R2   Each resistor individually satisfies Ohm’s law, 1 1V I R1∆ =  and . 
However, the potential across the resistors are the same, 

2 2V I R∆ = 2

V1 2V V∆ = ∆ = ∆ . Current 
conservation then implies 
 

   1 2
1 2 1 2

1 1V VI I I V
R R R

⎛ ⎞∆ ∆
= + = + = ∆ +⎜ ⎟

⎝ ⎠R
            (7.3.4) 

 
The two resistors in parallel can be replaced by one equivalent resistor eqR  with 

 (Figure 7.3.2b). Comparing these results, the equivalent resistance for two 
resistors that are connected in parallel is given by 

eqV IR∆ =

 

                          
eq 1 2

1 1 1
R R R

= +                           (7.3.5) 

 
This result easily generalizes to N resistors connected in parallel 
 

 
1eq 1 2 3

1 1 1 1 1N

i iR R R R R=

= + + + =∑  (7.3.6)                              
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When one resistance  is much smaller than the other resistances R1 iR , then the equivalent 
resistance eqR  is approximately equal to the smallest resistor 1R .  In the case of two 
resistors,
 

1 2 1 2
eq 1

1 2 2

R R R RR R
R R R

= ≈ =
+

 

 
This means that almost all of the current that enters the node point will pass through the 
branch containing the smallest resistance.  So, when a short develops across a circuit, all 
of the current passes through this path of nearly zero resistance. 
 
 
7.4 Kirchhoff’s Circuit Rules 
 
In analyzing circuits, there are two fundamental (Kirchhoff’s) rules: 
 
1. Junction Rule   
 
At any point where there is a junction between various current carrying branches, by 
current conservation the sum of the currents into the node must equal the sum of the 
currents out of the node (otherwise charge would build up at the junction); 
 
 in outI I=∑ ∑  (7.4.1) 
 
As an example, consider Figure 7.4.1 below:  
 

 
 

Figure 7.4.1 Kirchhoff’s junction rule. 
 
According to the junction rule, the three currents are related by 
 
 1 2 3I I I= +   
 
2. Loop Rule 
  
The sum of the voltage drops , across any circuit elements that form a closed circuit 
is zero: 

V∆
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closed loop

0V∆ =∑  (7.4.2) 

 
The rules for determining across a resistor and a battery with a designated travel 
direction are shown below: 

V∆

 

  

  
 

Figure 7.4.2 Convention for determining V∆ . 
 
Note that the choice of travel direction is arbitrary. The same equation is obtained 
whether the closed loop is traversed clockwise or counterclockwise. 
 
As an example, consider a voltage source  that is connected in series to two resistors, 

 and  
inV

R1 R2

 

 
 

Figure 7.4.3 Voltage divider. 
 

The voltage difference, , across resistor  will be less than .  This circuit is called 
a voltage divider.  From the loop rule, 

outV R2 inV

 
 in 1 2 0V IR IR− − =  (7.4.3) 
 
So the current in the circuit is given by 
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 in

1 2

VI
R R

=
+

 (7.4.4) 

 
Thus the voltage difference, , across resistor  is given by outV R2

 

 2
out 2 in

1 2

RV IR V
R R

= =
+

 (7.4.5) 

 
Note that the ratio of the voltages characterizes the voltage divider and is determined by 
the resistors: 
 

 out 2

in 1 2

V R
V R R

=
+

 (7.4.6) 

 
7.5 Voltage-Current Measurements 
 
Any instrument that measures voltage or current will disturb the circuit under observation.  
Some devices, known as ammeters, will indicate the flow of current by a meter 
movement or a digital display. There will be some voltage drop due to the resistance of 
the flow of current through the ammeter.  An ideal ammeter has zero resistance, but in the 
case of your multimeter, the resistance is  1Ω  on the  range. The drop of 

may or may not be negligible; knowing the meter resistance allows one to correct 
for its effect on the circuit. 

250 mDCA
0.25 V

 
An ammeter can be converted to a voltmeter by putting a resistor  in series with the coil 
movement.  The voltage across some circuit element can be determined by connecting the 
coil movement and resistor in parallel with the circuit element.  This causes a small 
amount of current to flow through the coil movement.  The voltage across the element 
can now be determined by measuring 

R

I  and computing the voltage from ∆V = IR  ,which 
is read on a calibrated scale. The larger the resistance R, the smaller the amount of 
current is diverted through the coil.  Thus an ideal voltmeter would have an infinite 
resistance.  
 

Resistor Value Chart 
0 Black 4 Yellow 8 Gray 
1 Brown 5 Green 9 White 
2 Red 6 Blue −1 Gold 
3 Orange 7 Violet −2 Silver 

 
The colored bands on a composition resistor specify numbers according to the chart 
above (2-7 follow the rainbow spectrum). Starting from the end to which the bands are 
closest, the first two numbers specify the significant figures of the value of the resistor 
and the third number represents a power of ten by which the first two numbers are to be 
multiplied  (gold is 10 –1). The fourth specifies the “tolerance,” or precision, gold being 
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5% and silver 10%. As an example, a 43-Ω  (43 ohms) resistor with 5% tolerance is 
represented by yellow, orange, black, gold. 
 
 
7.6 RC Circuit  
 
7.6.1 Charging a Capacitor 
 
Consider the circuit shown below. The capacitor is connected to a DC voltage source of 
emf ε . At time t = 0 , the switch S  is closed. The capacitor initially is uncharged, 

.  ( 0) 0q t = =
 

  
 

Figure 7.6.1 (a) RC circuit diagram for t < 0. (b) Circuit diagram for t > 0. 
 
In particular for , there is no voltage across the capacitor so the capacitor acts like a 
short circuit. At , the switch is closed and current begins to flow according to  

0t <
0t =

 

 0I
R
ε

=  (7.6.1). 

 
At this instant, the potential difference from the battery terminals is the same as that 
across the resistor. This initiates the charging of the capacitor. As the capacitor starts to 
charge, the voltage across the capacitor increases in time 
 

 ( )( )C
q tV t
C

=  (7.6.2) 

 

  
 

Figure 7.6.2 Kirchhoff’s rule for capacitors. 
 
Using Kirchhoff’s loop rule shown in Figure 7.6.2 for capacitors and traversing the loop 
clockwise, we obtain 
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0 ( ) C ( )I t R V t

dq qR
dt C

ε

ε

− −

= −

=

−
 (7.6.3) 

 
where we have substituted /I dq dt= +  for the current. Since I must be the same in all 
parts of the series circuit, the current across the resistance R is equal to the rate of 
increase of charge on the capacitor plates. The current flow in the circuit will continue to 
decrease because the charge already present on the capacitor makes it harder to put more 
charge on the capacitor. Once the charge on the capacitor plates reaches its maximum 
value Q, the current in the circuit will drop to zero. This is evident by rewriting the loop 
law as 
 
 ( ) ( )CI t R V tε= −  (7.6.4). 
 
Thus, the charging capacitor satisfies a first order differential equation that relates the rate 
of change of charge to the charge on the capacitor: 
 

 1dq q
dt R C

ε⎛= −⎜
⎝ ⎠

⎞
⎟  (7.6.5) 

 
This equation can be solved by the method of separation of variables. The first step is to 
separate terms involving charge and time, (this means putting terms involving dq and q 
on one side of the equality sign and terms involving  on the other side), dt
 

 1       dq dqdt dt
q R C
C

q εε
= ⇒ = −

⎛ ⎞−⎜ ⎟
⎝ ⎠

−
1

RC
 (7.6.6). 

 
Now we can integrate both sides of the above equation, 
 

 
0

1q dq dt
C RCq ε 0

t′
′= −

−′∫ ∫  (7.6.7) 

which yields 
  

 ln q C t
C RC
ε
ε

−⎛ ⎞ = −⎜ ⎟−⎝ ⎠
 (7.6.8) 

 
This can now be exponentiated using the fact that exp(ln x)= x  to yield 
 

 ( ) ( )/( ) 1 1t RC t RCq t C e Q eε −= − = − /−
 (7.6.9) 
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where Q Cε=  is the maximum amount of charge stored on the plates.  The time 
dependence of  is plotted in Figure 7.6.3 below: ( )q t
 

 
Figure 7.6.3 Charge as a function of time during the charging process. 

 
 
Once we know the charge on the capacitor we also can determine the voltage across the 
capacitor,  
 

 ( )( ) (1 )t RC
C

q tV t e
C

ε −= = −  (7.6.10) 

 
The graph of voltage as a function of time has the same form as Figure 7.6.3. From the 
figure, we see that after a sufficiently long time the charge on the capacitor approaches 
the value 
 
 ( )q t C Qε= ∞ = =  (7.6.11). 
 
At that time, the voltage across the capacitor is equal to the applied voltage source and 
the charging process effectively ends, 
 

 ( )
C

q t QV
C C

ε= ∞
= = =  (7.6.12). 

 
The current that flows in the circuit is equal to the derivative in time of the charge, 
 

 0( ) t R C t R CdqI t e I e
dt R

ε −⎛ ⎞= = =⎜ ⎟
⎝ ⎠

−  (7.6.13). 

 
The coefficient in front of the exponential is equal to the initial current that flows in the 
circuit when the switch was closed at t = 0. The graph of current as a function of time is 
shown in Figure 7.6.4 below: 
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Figure 7.6.4 Current as a function of time during the charging process 
  
The current in the charging circuit decreases exponentially in time, I( t) = I 0 e−t R C .  This 
function is often written as I( t) = I 0 e−t τ  where τ = RC  is called the time constant.  The 
SI units ofτ  are seconds, as can be seen from the dimensional analysis: 
 

[Ω][F]=([V] [A])([C] [V])=[C] [A]=[C] ([C] [s])=[s]  
 
The time constantτ  is a measure of the decay time for the exponential function.  This 
decay rate satisfies the following property: 
 
 1( ) ( )I t I tτ e−+ =  (7.6.14) 
  
which shows that after one time constantτ  has elapsed, the current falls off by a factor of 

, as indicated in Figure 7.6.4 above. Similarly, the voltage across the capacitor 
(Figure 7.6.5 below) can also be expressed in terms of the time constant 
e−1 = 0.368

τ : 
 
 ( ) (1 )t

CV t e τε −= −  (7.6.15) 
 

 
 

Figure 7.6.5 Voltage across capacitor as a function of time during the charging process. 
 
Notice that initially at time , Vt = 0 C (t = 0)= 0 . After one time constant τ  has elapsed, the 
potential difference across the capacitor plates has increased by a factor (  
of its final value:  

1−e−1) = 0.632

 
 1( ) (1 ) 0.632CV eτ ε ε−= − =  (7.6.16) 
. 
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7.6.2 Discharging a Capacitor 
 
Suppose initially the capacitor has been charged to some value Q.  For , the switch is 
open and the potential difference across the capacitor is given by 

0t <
/CV Q C= . On the other 

hand, the potential difference across the resistor is zero because there is no current flow, 
that is, . Now suppose at  the switch is closed (Figure 7.6.6). The capacitor will 
begin to discharge. 

0I = 0t =

 

  
Figure 7.6.6 Discharging the RC circuit 

 
The charged capacitor is now acting like a voltage source to drive current around the 
circuit. When the capacitor discharges (electrons flow from the negative plate through the 
wire to the positive plate), the voltage across the capacitor decreases. The capacitor is 
losing strength as a voltage source. Applying the Kirchhoff’s loop rule by traversing the 
loop counterclockwise, the equation that describes the discharging process is given by 
 

 0q IR
C
− =  (7.6.17) 

 
The current that flows away from the positive plate is proportional to the charge on the 
plate, 

 dqI
dt

= −  (7.6.18) 

 
The negative sign in the equation is an indication that the rate of change of the charge is 
proportional to the negative of the charge on the capacitor. This is due to the fact that the 
charge on the positive plate is decreasing as more positive charges leave the positive plate. 
Thus, charge satisfies a first order differential equation: 
 

 0q dqR
C dt
+ =  (7.6.19). 

 
This equation can also be integrated by the method of separation of variables 
 

 1dq dt
q RC

= −  (7.6.20) 

which yields 
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0

1         ln
q t

Q

dq q tdt
q RC Q R
′ ⎛ ⎞′= − ⇒ = −⎜ ⎟′ ⎝ ⎠

∫ ∫ C
 (7.6.21) 

or 
 
 ( ) t RCq t Q e−=  (7.6.22) 
 
The voltage across the capacitor is then 
 

 ( )( ) t RC
C

q t QV t e
C C

−⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (7.6.23) 

 
A graph of voltage across the capacitor vs. time for the discharging capacitor is shown in 
Figure 7.6.7. 
 

 
Figure 7.6.7 Voltage across the capacitor as a function of time for discharging capacitor. 
 
The current also exponentially decays in the circuit as can be seen by differentiating the 
charge on the capacitor 
 

 t RCdq QI
dt RC

−⎛ ⎞= − = ⎜ ⎟
⎝ ⎠

e  (7.6.24) 

 
A graph of the current flowing in the circuit as a function of time also has the same form 
as the voltage graph depicted in Figure 7.6.8. 
 

 
Figure 7.6.8 Current as a function of time for discharging capacitor. 
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7.7 Summary 
 

• The equivalent resistance of a set of resistors connected in series: 
 

 eq 1 2 3
1

N

i
i

R R R R R
=

= + + + =∑   

 
• The equivalent resistance of a set of resistors connected in parallel: 

 

 
1eq 1 2 3

1 1 1 1 1N

i iR R R R R=

= + + + =∑   

 
• Kirchhoff’s rules: 

 
(1) The sum of the currents flowing into a junction is equal to the sum of the 
currents flowing out of the junction: 

  
 in outI I=∑ ∑   
 

(2) The algebraic sum of the changes in electric potential in a closed-circuit loop 
is zero. 

 
 

closed loop
0V∆ =∑   

 
• In a charging capacitor, the charges and the current as a function of time are 

  
/( ) 1 ,       ( )

t
t RCRCq t Q e I t e

R
ε− −⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

  
• In a discharging capacitor, the charges and the current as a function of time are 
 

 /( ) ,     ( )t RC t RCQq t Q e I t e
RC

− ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

/−    

 
 
7.8 Problem-Solving Strategy: Applying Kirchhoff’s Rules 
 
In this chapter we have seen how Kirchhoff’s rules can be used to analyze multiloop 
circuits. The steps are summarized below: 
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(1) Draw a circuit diagram, and label all the quantities, both known and unknown. The 
number of unknown quantities is equal to the number of linearly independent 
equations we must look for. 

 
(2) Assign a direction to the current in each branch of the circuit. (If the actual direction 

is opposite to what you have assumed, your result at the end will be a negative 
number.) 

 
(3) Apply the junction rule to all but one of the junctions. (Applying the junction rule to 

the last junction will not yield any independent relationship among the currents.) 
 
(4) Apply the loop rule to the loops until the number of independent equations obtained is 

the same as the number of unknowns. For example, if there are three unknowns, then 
we must write down three linearly independent equations in order to have a unique 
solution.  

 
Traverse the loops using the convention below for V∆ : 
 

resistor 

  

emf 
source 

  

capacitor 

  
 

The same equation is obtained whether the closed loop is traversed clockwise or 
counterclockwise. (The expressions actually differ by an overall negative sign. 
However, using the loop rule, we are led to0 0=− , and hence the same equation.)  

 
(5) Solve the simultaneous equations to obtain the solutions for the unknowns. 
 
As an example of illustrating how the above procedures are executed, let’s analyze the 
circuit shown in Figure 7.8.1. 
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Figure 7.8.1 A multiloop circuit. 

 
Suppose the emf sources 1ε  and 2ε , and the resistances 1R , 2R and 3R are all given, and 
we would like to find the currents through each resistor, using the methodology outlined 
above. 
 
(1) The unknown quantities are the three currents 1I , 2I  and 3I , associated with the three 
resistors. Therefore, to solve the system, we must look for three independent equations.  
 
(2) The directions for the three currents are arbitrarily assigned, as indicated in Figure 
7.8.2.  
 

              Figure 7.8.2 
 
(3) Applying Kirchhoff’s current rule to junction b yields 
 
 1 2 3I I I+ =   
 
since 1I and 2I  are leaving the junction while 3I  is entering the junction. The same 
equation is obtained if we consider junction c. 
 
(4) The other two equations can be obtained by using the loop (voltage) rule, which states 
that the net potential difference across all elements in a closed circuit loop is zero. 
Traversing the first loop befcb in the clockwise direction yields 
 
 
 2 2 1 1 1 2 0I R I Rε ε− − + − =   

 17



 
Similarly, traversing the second loop abcda clockwise gives 
 
 2 1 1 3 3 0I R I Rε − − =   
  
Note however, that one may also consider the big loop abefcda. This leads to 
 
 2 2 1 3 3 0I R I Rε− − − =   
 
However, the equation is not linearly independent of the other two loop equations since it 
is simply the sum of those equations.  
 
(5) The solutions to the above three equations are given by, after tedious but 
straightforward algebra, 
 

 

1 3 2 3 2 2
1

1 2 1 3 2 3

1 1 1 3 2 3
2

1 2 1 3 2 3

2 2 1 1
3

1 2 1 3 2 3

R R RI
R R R R R R

R R RI
R R R R R R

R RI
R R R R R R

ε ε ε

ε ε ε

ε ε

+ +
=

+ +

+ +
= −

+ +

−
=

+ +

  

 
Note that I2 is a negative quantity. This simply indicates that the direction of I2 is 
opposite of what we have initially assumed. 
 
 
7.9 Solved Problems 
 
7.9.1 Equivalent Resistance 
 
Consider the circuit shown in Figure 7.9.1. For a given resistance 0R , what must be the 
value of 1R  so that the equivalent resistance between the terminals is equal to 0R ? 
 

                   Figure 7.9.1 
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Solution: 
 
The equivalent resistance, 'R , due to the three resistors on the right is 
 

 
( )
0 1

1 0 1 1 0 1

21 1 1
'

R R
R R R R R R R

+
= + =

+ +
  

or  
 

 ( )1 0 1

0 1

'
2

R R R
R

R R
+

=
+

  

 
Since 'R  is in series with the fourth resistor R1, the equivalent resistance of the entire 
configuration becomes  
 

 ( ) 2
1 0 1 1 1

eq 1
0 1 0 1

3 2
2 2

R R R 0R R RR R
R R R R

+ +
= + =

+ +
  

If eq 0R R= , then 
 
   ( ) 2

0 0 1 1 1 0 0 12 3 2 3R R R R R R R R+ = + ⇒ =2 2

 
or 

 0
1 3

RR =   

 
7.9.2 Variable Resistance 
 
Show that, if a battery of fixed emf ε  and internal resistance r  is connected to a variable 
external resistance R , the maximum power is delivered to the external resistor when 
R r= . 

 
Solution: 
 
Using Kirchhoff’s rule, 
 
 ( )I R rε = +   
which implies 

 I
R r
ε

=
+

  

The power dissipated is equal to 
 

 
( )

2
2

2P I R R
R r
ε

= =
+
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To find the value of R  which gives out the maximum power, we differentiate P  with 
respect to R  and set the derivative equal to 0: 
 

 
( ) ( ) ( )

2 2
2 2 3

1 2 0dP R r R
dR R r R r R r

ε ε
⎡ ⎤ −

= − =⎢ ⎥
+ + +⎢ ⎥⎣ ⎦

=   

 
which implies 
 
 R r=  
 
This is an example of “impedance matching,” in which the variable resistance R is 
adjusted so that the power delivered to it is maximized. The behavior of P as a function 
of R is depicted in Figure 7.9.2 below. 
  

     Figure 7.9.2 
 
7.9.3 RC Circuit 
 
In the circuit in figure 7.9.3, suppose the switch has been open for a very long time. At 
time , it is suddenly closed. 0t =
 

              Figure 7.9.3 
 
(a) What is the time constant before the switch is closed? 
 
(b) What is the time constant after the switch is closed? 
 
(c) Find the current through the switch as a function of time after the switch is closed.  
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Solutions: 
 
(a) Before the switch is closed, the two resistors R1 and R2 are in series with the capacitor. 
Since the equivalent resistance is eq 1 2R R R= + , the time constant is given by 
 
 eq 1 2( )R C R R Cτ = = +   
 
The amount of charge stored in the capacitor is  
 
 /( ) (1 )tq t C e τε −= −   
 
(b) After the switch is closed, the closed loop on the right becomes a decaying RC circuit 
with time constant 2R Cτ ′ = . Charge begins to decay according to  
 
 /( ) tq t C e τε ′−′ =   
 
(c) The current passing through the switch consists of two sources: the steady current I1 
from the left circuit, and the decaying current 2I  from the RC circuit. The currents are 
given by 
 

 
2

1
1

//

2

( )
'

t R Ct

I
R

dq CI t e e
dt R

τ

ε

ε ε
τ

′ −−

=

⎛ ⎞′ ⎛ ⎞′ = = − = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

 
The negative sign in ( )I t′  indicates that the direction of flow is opposite of the charging 
process. Thus, since both 1I  and I ′  move downward across the switch, the total current is  
 

 2/
1

1 2

( ) ( ) t R CI t I I t e
R R
ε ε −⎛ ⎞

′= + = + ⎜ ⎟
⎝ ⎠

  

 
 
7.9.4 Parallel vs. Series Connections 
 
Figure 7.9.4 show two resistors with resistances R1 and R2 connected in parallel and in 
series. The battery has a terminal voltage of ε .  
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Figure 7.9.4 

 
 

Suppose R1 and R2 are connected in parallel. 
 
(a) Find the power delivered to each resistor. 
 
(b) Show that the sum of the power used by each resistor is equal to the power supplied 
by the battery. 
 
 Suppose R1 and R2 are now connected in series. 
 
(c) Find the power delivered to each resistor. 
 
(d) Show that the sum of the power used by each resistor is equal to the power supplied 
by the battery. 
 
(e) Which configuration, parallel or series, uses more power? 
 
Solutions: 
 
(a) When two resistors are connected in parallel, the current through each resistor is  
 

 1 2
1 2

,I I
R R
ε ε

= =   

 
and the power delivered to each resistor is given by 
 

 
2 2

2 2
1 1 1 2 2 2

1 2

,P I R P I R
R R
ε ε

= = = =   

 
The results indicate that the smaller the resistance, the greater the amount of power 
delivered. If the loads are the light bulbs, then the one with smaller resistance will be 
brighter since more power is delivered to it.  
 
(b) The total power delivered to the two resistors is  
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2 2 2

1 2
1 2 e

RP P P
qR R R

ε ε ε
= + = + =   

 
where  
 

 1 2
eq

eq 1 2 1 2

1 1 1 R RR
R R R R R

= + ⇒ =
+

  

 
is the equivalent resistance of the circuit. On the other hand, the total power supplied by 
the battery is P Iε ε= , where 1 2I I I= + , as seen from the figure. Thus, 
 

 
2 2 2

1 2
1 2 1 2 eq

RP I I P
R R R R Rε
ε ε ε ε εε ε ε ε

⎛ ⎞ ⎛ ⎞
= + = + = + = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  

 
as required by energy conservation. 
 
(c) When the two resistors are connected in series, the equivalent resistance becomes  
 
 eq 1 2R R R′ = +   
 
and the currents through the resistors are  
 

 1 2
1 2

I I I
R R
ε

= = =
+

  

 
Therefore, the power delivered to each resistor is 
 

 
2 2

2 2
1 1 1 1 2 2 2

1 2 1 2

,P I R R P I R R
R R R R
ε ε⎛ ⎞ ⎛ ⎞

= = = =⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
2+
  

 
Contrary to what we have seen in the parallel case, when connected in series, the greater 
the resistance, the greater the fraction of the power delivered. Once again, if the loads are 
light bulbs, the one with greater resistance will be brighter.  
 
(d) The total power delivered to the resistors is  
 

 
2 2 2 2

1 2 1 2
1 2 1 2 1 2 e

RP P P R R
qR R R R R R R

ε ε ε⎛ ⎞ ⎛ ⎞′ = + = + = =⎜ ⎟ ⎜ ⎟ ′+ + +⎝ ⎠ ⎝ ⎠

ε   

 
On the other hand, the power supplied by the battery is  
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2 2

1 2 1 2 e

P I
qR R R R Rε

ε εε ε
⎛ ⎞′ = = = =⎜ ⎟

ε
′+ +⎝ ⎠

  

 
Again, we see that , as required by energy conservation. ' 'RP Pε =
 
(e) Comparing the results obtained in (b) and (d), we see that  
 

 
2 2 2

1 2 1 2

P
R R R R

Pε ε
ε ε ε ′= + > =

+
  

 
which means that the parallel connection uses more power. The equivalent resistance of 
two resistors connected in parallel is always smaller than that connected in series.  
 
 
7.9.5 Resistor Network 
 
Consider a cube which has identical resistors with resistance R along each edge, as shown 
in Figure 7.9.5. 
 

 
 

Figure 7.9.5 Resistor network 
 
Show that the equivalent resistance between points a and b is eq 5 / 6R R= . 
  
Solution: 
 
From symmetry arguments, the current which enters a must split evenly, with going 
to each branch. At the next junction, say c, must further split evenly with going 
through the two paths ce and cd. The current going through the resistor in db is the sum 
of the currents from fd and cd :

/ 3I
/ 3I / 6I

/ 6 / 6 / 3I I I+ = . 
 
Thus, the potential difference between a and b can be obtained as 
 

 5
3 6 3 6ab ac cd db
I I IV V V V R R R I= + + = + + = R   
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which shows that the equivalent resistance is  
 

 eq
5
6

R R=   

 
 
7.10 Conceptual Questions 
 
1. Given three resistors of resistances 1R , 2R and 3R , how should they be connected to (a) 
maximize (b) minimize the equivalent resistance?  
 
2. Why do the headlights on the car become dim when the car is starting? 
 
3. Does the resistor in an RC circuit affect the maximum amount of charge that can be 
stored in a capacitor? Explain.  
 
4. Can one construct a circuit such that the potential difference across the terminals of the 
battery is zero? Explain.  
 
 
7.11 Additional Problems 
 
7.11.1 Resistive Circuits 
 
Consider two identical batteries of emf ε  and internal resistance r. They may be 
connected in series or in parallel and are used to establish a current in resistance R as 
shown in Figure 7.11.1. 

 

 
 

 
Figure 7.11.1 Two batteries connected in (a) series, and (b) parallel. 

 
(a) Derive an expression for the current in R for the series connection shown in Figure 
7.11.1(a). Be sure to indicate the current on the sketch (to establish a sign convention for 
the direction) and apply Kirchhoff's loop rule.  

 
(b) Find the current for the parallel connection shown in Figure 7.11.1(b).  
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(c) For what relative values of r and R would the currents in the two configurations be the 
same?; be larger in Figure 7.11.1(a)?; be larger in 7.11.1(b)? 
 
 
7.11.2 Multiloop Circuit 
 
Consider the circuit shown in Figure 7.11.2. Neglecting the internal resistance of the 
batteries, calculate the currents through each of the three resistors. 
 

                  Figure 7.11.2 
 
 

7.11.3 Power Delivered to the Resistors 
 
Consider the circuit shown in Figure 7.11.3. Find the power delivered to each resistor. 
 

 Figure 7.11.3 
 

7.11.4 Resistor Network 
 
Consider an infinite network of resistors of resistances 0R  and 1R  shown in Figure 7.11.4. 
Show that the equivalent resistance of this network is  
 
 2

eq 1 1 1 02R R R R R= + +  
 

        Figure 7.11.4 
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7.11.5 RC Circuit 
 
Consider the circuit shown in Figure 7.11.5. Let 40 Vε = , 1 8.0 R = Ω , , 

 and . The capacitor is initially uncharged.  
2 6.0 R = Ω

3 4.0 R = Ω 4.0 µFC =
 

              Figure 7.11.5 
 

 
At , the switch is closed. 0t =
 
(a) Find the current through each resistor immediately after the switch is closed. 
 
(b) Find the final charge on the capacitor. 
 
 
 
7.11.6 Resistors in Series and Parallel 
 
A circuit containing five resistors and a 12 V battery is shown in Figure 7.11.6.  Find the 
potential drop across the  resistor.  [Ans: 7.5 V]. 5Ω
 

            Figure 7.11.6 
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