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Alternating-Current Circuits 
 
 
12.1 AC Sources 
 
In Chapter 10 we learned that changing magnetic flux can induce an emf according to 
Faraday’s law of induction. In particular, if a coil rotates in the presence of a magnetic 
field, the induced emf varies sinusoidally with time and leads to an alternating current 
(AC), and provides a source of AC power. The symbol for an AC voltage source is  
 

 
 
An example of an AC source is 
 
 0( ) sinV t V tω=  (12.1.1) 
 
where the maximum valueV  is called the amplitude. The voltage varies between and 

 since a sine function varies between +1 and −1. A graph of voltage as a function of 
time is shown in Figure 12.1.1.  
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Figure 12.1.1 Sinusoidal voltage source 
 
The sine function is periodic in time.  This means that the value of the voltage at time t  
will be exactly the same at a later time t t T′ = +  where T  is the period.  The frequency, 
f , defined as 1/f T= , has the unit of inverse seconds (s−1), or hertz (Hz). The angular 

frequency is defined to be 2 fω π= . 
 
When a voltage source is connected to an RLC circuit, energy is provided to compensate 
the energy dissipation in the resistor, and the oscillation will no longer damp out. The 
oscillations of charge, current and potential difference are called driven or forced 
oscillations.   
 
After an initial “transient time,” an AC current will flow in the circuit as a response to the 
driving voltage source. The current, written as 
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 0( ) sin( )I t I tω φ= −  (12.1.2) 
 
will oscillate with the same frequency as the voltage source, with an amplitude 0I  and 
phase φ  that depends on the driving frequency. 
 
 
12.2 Simple AC circuits 

 
Before examining the driven RLC circuit, let’s first consider the simple cases where only 
one circuit element (a resistor, an inductor or a capacitor) is connected to a sinusoidal 
voltage source. 
 
12.2.1 Purely Resistive load 
 
Consider a purely resistive circuit with a resistor connected to an AC generator, as shown 
in Figure 12.2.1. (As we shall see, a purely resistive circuit corresponds to infinite 
capacitance C and zero inductance= ∞ 0L = .) 
  

 
 

Figure 12.2.1 A purely resistive circuit 
 
Applying Kirchhoff’s loop rule yields  
 
 ( ) ( ) ( ) ( ) 0R RV t V t V t I t R− = − =  (12.2.1) 
 
where  is the instantaneous voltage drop across the resistor. The 
instantaneous current in the resistor is given by 

( ) ( )R RV t I t R=

 

 0
0

sin( )( ) sinRR
R

V tV t
RI t I t

R R
ω ω= = =  (12.2.2) 

 
where , and 0RV V= 0 0 0R RI V R=  is the maximum current. Comparing Eq. (12.2.2) with 
Eq. (12.1.2), we find 0φ = , which means that ( )RI t and are in phase with each 
other, meaning that they reach their maximum or minimum values at the same time. The 
time dependence of the current and the voltage across the resistor is depicted in Figure 
12.2.2(a). 

( )RV t
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Figure 12.2.2 (a) Time dependence of ( )RI t  and ( )RV t  across the resistor. (b) Phasor 
diagram for the resistive circuit. 
 
The behavior of ( )RI t and can also be represented with a phasor diagram, as shown 
in Figure 12.2.2(b). A phasor is a rotating vector having the following properties: 

( )RV t

 
(i) length: the length corresponds to the amplitude. 
 
(ii) angular speed: the vector rotates counterclockwise with an angular speed ω.   
 
(iii) projection: the projection of the vector along the vertical axis corresponds to the 
value of the alternating quantity at time t. 
 
We shall denote a phasor with an arrow above it. The phasor  has a constant 
magnitude of . Its projection along the vertical direction is 

0RV

0RV 0 sinRV tω , which is equal 
to , the voltage drop across the resistor at time t . A similar interpretation applies 

to

( )RV t

0RI  for the current passing through the resistor. From the phasor diagram, we readily 
see that both the current and the voltage are in phase with each other. 
 
The average value of current over one period can be obtained as: 
 

 0
00 0 0

1 1 2( ) ( ) sin sin 0
T T TR

R R R
I tI t I t dt I t  dt  dt

T T T T
πω= = =∫ ∫ ∫ =  (12.2.3) 

 
This average vanishes because 
 

 
0

1sin sin 0
T

t t  
T

ω ω dt= =∫  (12.2.4) 

 
Similarly, one may find the following relations useful when averaging over one period: 
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T
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T
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∫

∫

∫ ∫

∫ ∫

1

1

t =

=

 (12.2.5) 

 
From the above, we see that the average of the square of the current is non-vanishing: 
 

 2 2 2 2 2 2
0 00 0 0

1 1 1 2( ) ( ) sin sin
2

T T T

R R R R
t 2

0
1

RI t I t dt I t  dt I  dt I
T T T T

πω ⎛ ⎞= = = =⎜ ⎟
⎝ ⎠∫ ∫ ∫  (12.2.6) 

 
It is convenient to define the root-mean-square (rms) current as 
 

 2 0
rms ( )

2
R

R
II I t= =  (12.2.7) 

In a similar manner, the rms voltage can be defined as 
 

 2 0
rms ( )

2
R

R
VV V t= =  (12.2.8) 

 
The rms voltage supplied to the domestic wall outlets in the United States is 

at a frequency .  rms 120 VV =  60 Hzf =
 
The power dissipated in the resistor is 
 
  (12.2.9) 2( ) ( ) ( ) ( )R R R RP t I t V t I t R= =
 
from which the average over one period is obtained as: 
 

 
2

2 2 2 rms
0 rms rms rms

1( ) ( )
2R R R

VP t I t R I R I R I V
R

= = = = =  (12.2.10) 

 
 
12.2.2 Purely Inductive Load 
 
Consider now a purely inductive circuit with an inductor connected to an AC generator, 
as shown in Figure 12.2.3.  
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Figure 12.2.3 A purely inductive circuit  
 
As we shall see below, a purely inductive circuit corresponds to infinite capacitance 

and zero resistance . Applying the modified Kirchhoff’s rule for inductors, 
the circuit equation reads  
C = ∞ 0R =

 

 ( ) ( ) ( ) 0L
L

dIV t V t V t L
dt

− = − =  (12.2.11) 

 
which implies  
 

 0( ) sinLL VdI V t t
dt L L

ω= =  (12.2.12) 

 
where . Integrating over the above equation, we find 0LV V= 0

 

 0 0 0( ) sin  cos sin
2

L L L
L L

V V VI t dI t dt t t
L L L

πω ω
ω ω

⎛ ⎞ ⎛ ⎞ ⎛= = = − = −⎜⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠∫ ∫ ω ⎞

⎟  (12.2.13) 

 
where we have used the trigonometric identity 
 

 cos sin
2

t t πω ω⎛− = −⎜
⎝ ⎠

⎞
⎟  (12.2.14) 

 
for rewriting the last expression. Comparing Eq. (12.2.14) with Eq. (12.1.2), we see that 
the amplitude of the current through the inductor is  
 

 0
0

0L L
L

L

V VI
L Xω

= =  (12.2.15) 

 
where 
 
 LX Lω=  (12.2.16) 
 
is called the inductive reactance. It has SI units of ohms (Ω), just like resistance. 
However, unlike resistance, LX depends linearly on the angular frequency ω. Thus, the 
resistance to current flow increases with frequency. This is due to the fact that at higher 
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frequencies the current changes more rapidly than it does at lower frequencies. On the 
other hand, the inductive reactance vanishes as ω  approaches zero.  
 
By comparing Eq. (12.2.14) to Eq. (12.1.2), we also find the phase constant to be 
 

 
2
πφ = +  (12.2.17) 

 
The current and voltage plots and the corresponding phasor diagram are shown in the 
Figure 12.2.4 below. 
 

  

Figure 12.2.4 (a) Time dependence of ( )LI t  and ( )LV t  across the inductor. (b) Phasor 
diagram for the inductive circuit. 
 
As can be seen from the figures, the current ( )LI t  is out of phase with by( )LV t / 2φ π= ; 
it reaches its maximum value after does by one quarter of a cycle. Thus, we say that  ( )LV t
 

 

The current lags voltage by π / 2 in a purely inductive circuit 
 

 
 
12.2.3 Purely Capacitive Load  
 
In the purely capacitive case, both resistance R and inductance L are zero. The circuit 
diagram is shown in Figure 12.2.5. 
 

 
 

Figure 12.2.5 A purely capacitive circuit 
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Again, Kirchhoff’s voltage rule implies 
 

 ( )( ) ( ) ( ) 0C
Q tV t V t V t

C
− = − =  (12.2.18) 

 
which yields 
 
 0( ) ( ) ( ) sinC CQ t CV t CV t CV tω= = =  (12.2.19) 
 
where . On the other hand, the current is 0CV V= 0

 

 0 0( ) cos sin
2C C C

dQI t CV t CV t
dt

πω ω ω ω⎛= + = = +⎜
⎝ ⎠

⎞
⎟  (12.2.20) 

 
where we have used the trigonometric identity 
 

 cos sin
2

t t πω ω⎛= +⎜
⎝ ⎠

⎞
⎟  (12.2.21) 

 
The above equation indicates that the maximum value of the current is 
 

 0
0 0

C
C C

C

VI CV
X

ω= =  (12.2.22) 

 
where 
 

 1
CX

Cω
=  (12.2.23) 

 
is called the capacitance reactance. It also has SI units of ohms and represents the 
effective resistance for a purely capacitive circuit. Note that CX  is inversely proportional 
to both C and ω , and diverges as ω approaches zero. 
 
By comparing Eq. (12.2.21) to Eq. (12.1.2), the phase constant is given by 
 

 
2
πφ = −  (12.2.24) 

 
The current and voltage plots and the corresponding phasor diagram are shown in the 
Figure 12.2.6 below.  
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Figure 12.2.6 (a) Time dependence of ( )CI t  and across the capacitor. (b) Phasor 
diagram for the capacitive circuit. 

( )CV t

 
Notice that at , the voltage across the capacitor is zero while the current in the circuit 
is at a maximum. In fact, 

0t =
( )CI t  reaches its maximum before  by one quarter of a 

cycle (
( )CV t

/ 2φ π= ). Thus, we say that   
 

 

The current leads the voltage by π/2 in a capacitive circuit 
 

 
 
12.3 The RLC Series Circuit 
 
Consider now the driven series RLC circuit shown in Figure 12.3.1. 
 

 
 

Figure 12.3.1 Driven series RLC Circuit 
 
Applying Kirchhoff’s loop rule, we obtain  
 

 ( ) ( ) ( ) ( ) ( ) 0R L C
dI QV t V t V t V t V t IR L
dt C

− − − = − − − =  (12.3.1) 

 
which leads to the following differential equation: 
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 0 sindI QL IR V t
dt C

ω+ + =  (12.3.2) 

 
Assuming that the capacitor is initially uncharged so that /I dQ dt= +  is proportional to 
the increase of charge in the capacitor, the above equation can be rewritten as 
 

 
2

02 sind Q dQ QL R V
dt dt C

tω+ + =  (12.3.3) 

 
 One possible solution to Eq. (12.3.3) is 
 
 0( ) cos( )Q t Q tω φ= −  (12.3.4) 
 
where the amplitude and the phase are, respectively, 
 

 

0 0
0 2 2 2 2

0
2 2

/
( / ) ( 1/ ) ( 1/ )

( )L C

V L VQ
2R L LC R L

V
R X X

ω ω ω ω ω

ω

= =
+ − + −

=
+ −

C
 (12.3.5) 

 
and 
 

 1 1tan L CX XL
R C R

φ ω
ω

−⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 (12.3.6) 

 
The corresponding current is 
 

 0( ) sin( )dQI t I t
dt

ω φ= + = −  (12.3.7) 

 
with an amplitude  
 

 0
0 0 2 ( )L C

VI Q
R X X

ω= − = −
+ − 2

 (12.3.8) 

 
Notice that the current has the same amplitude and phase at all points in the series RLC 
circuit. On the other hand, the instantaneous voltage across each of the three circuit 
elements R, L and C has a different amplitude and phase relationship with the current, as 
can be seen from the phasor diagrams shown in Figure 12.3.2.    
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Figure 12.3.2 Phasor diagrams for the relationships between current and voltage in (a) 
the resistor, (b) the inductor, and (c) the capacitor, of a series RLC circuit. 
 
From Figure 12.3.2, the instantaneous voltages can be obtained as: 
 

 

0 0

0 0

0 0

( ) sin sin

( ) sin cos
2

( ) sin cos
2

R R

L L L

C C C

V t I R t V t

V t I X t V t

V t I X t V t

ω ω
πω ω

πω ω

= =

⎛ ⎞= + =⎜ ⎟
⎝ ⎠
⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 (12.3.9) 

 
where  
 
  (12.3.10) 0 0 0 0 0 0,      ,      R L L CV I R V I X V I X= = = C

 
are the amplitudes of the voltages across the circuit elements. The sum of all three 
voltages is equal to the instantaneous voltage supplied by the AC source: 
 
 ( ) ( ) ( ) ( )R L CV t V t V t V t= + +  (12.3.11) 
 
Using the phasor representation, the above expression can also be written as 
 
 0 0 0R L CV V V V= + + 0  (12.3.12) 
 
as shown in Figure 12.3.3 (a). Again we see that current phasor 0I  leads the capacitive 

voltage phasor by 0CV / 2π  but lags the inductive voltage phasor 0LV  by / 2π . The three 
voltage phasors rotate counterclockwise as time passes, with their relative positions fixed. 
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Figure 12.3.3 (a) Phasor diagram for the series RLC circuit. (b) voltage relationship 
 
The relationship between different voltage amplitudes is depicted in Figure 12.3.3(b). 
From the Figure, we see that 
 

 

2 2
0 0 0 0 0 0 0 0

2 2
0 0 0

2 2
0

| | | | ( )

( ) ( )

( )

R L C R L C

L C

L C

V V V V V V V V

I R I X I X

I R X X

= = + + = + −

= + −

= + −

 (12.3.13) 

 
which leads to the same expression for I0 as that obtained in Eq. (12.3.7).  
 
It is crucial to note that the maximum amplitude of the AC voltage source  is not equal 
to the sum of the maximum voltage amplitudes across the three circuit elements:  

0V

 
 0 0 0R L CV V V V 0≠ + +  (12.3.14) 
 
This is due to the fact that the voltages are not in phase with one another, and they reach 
their maxima at different times.  
 
 
12.3.1 Impedance  
 
We have already seen that the inductive reactance LX Lω= and capacitance reactance 

1/CX Cω= play the role of an effective resistance in the purely inductive and capacitive 
circuits, respectively. In the series RLC circuit, the effective resistance is the impedance, 
defined as  
 
 2 ( L CZ R X X= + − 2)  (12.3.15) 
 
The relationship between Z, XL and XC can be represented by the diagram shown in 
Figure 12.3.4: 
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Figure 12.3.4 Diagrammatic representation of the relationship between Z, LX and CX . 
 
The impedance also has SI units of ohms. In terms of Z, the current may be rewritten as  
 

 0( ) sin( )VI t t
Z

ω φ= −  (12.3.16) 

 
Notice that the impedance Z also depends on the angular frequency ω, as do XL and XC.  
 
Using Eq. (12.3.6) for the phase φ  and Eq. (12.3.15) for Z , we may readily recover the 
limits for simple circuit (with only one element). A summary is provided in Table 12.1 
below: 
 

Simple 
Circuit R  L  C  LX Lω=  1

CX
Cω

=  1tan L CX X
R

φ − −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 2 2( )L CZ R X X= + −  

purely 
resistive R  0 ∞  0 0 0 R  
purely 
inductive 0 L  ∞  LX  0 / 2π  LX  
purely 
capacitive 0 0 C  0 CX  / 2π−  CX  

 
Table 12.1 Simple-circuit limits of the series RLC circuit 

  
 
12.3.2 Resonance  
 
Eq. (12.3.15) indicates that the amplitude of the current 0 0 /I V Z= reaches a maximum 
when Z is at a minimum. This occurs when L CX X= , or 1/L Cω ω= , leading to 
 

 0
1
LC

ω =  (12.3.17) 

 
The phenomenon at which 0I reaches a maximum is called a resonance, and the 
frequency 0ω  is called the resonant frequency. At resonance, the impedance 
becomes Z R= , the amplitude of the current is 
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 0
0

VI
R

=  (12.3.18) 

 
and the phase is 
 0φ =  (12.3.19) 
 
as can be seen from Eq. (12.3.5). The qualitative behavior is illustrated in Figure 12.3.5. 
 

 
 
Figure 12.3.5 The amplitude of the current as a function of ω in the driven RLC circuit. 

 
 
12.4 Power in an AC circuit 

 
In the series RLC circuit, the instantaneous power delivered by the AC generator is given 
by 
 

 

( )

2
0 0

0

2
20

( ) ( ) ( ) sin( ) sin sin( )sin

sin cos sin cos sin

V VP t I t V t t V t t t
Z Z

V t t t
Z

ω φ ω ω φ

ω φ ω ω φ

= = − ⋅ = −

= −

ω
 (12.4.1) 

 
where we have used the trigonometric identity 
 
 sin( ) sin cos cos sint t tω φ ω φ ω φ− = −  (12.4.2) 
 
The time average of the power is 
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2 2
20 0

0 0

2 2
20 0

2
0

1 1( ) sin cos  sin cos sin

cos sin sin sin cos

1 cos
2

T TV VP t t dt t t dt
T Z T Z
V Vt t t
Z Z
V
Z

 ω φ ω ω

φ ω φ ω ω

φ

= −

= −

=

∫ ∫ φ

 (12.4.3) 

 
where Eqs. (12.2.5) and (12.2.7) have been used.  In terms of the rms quantities, the 
average power can be rewritten as 
 

 
2 2

0 rms
rms rms

1( ) cos cos cos
2

V VP t I V
Z Z

φ φ= = = φ  (12.4.4) 

 
The quantity cosφ  is called the power factor. From Figure 12.3.4, one can readily show 
that  
 

 cos R
Z

φ =  (12.4.5) 

 
Thus, we may rewrite ( )P t  as 
 

 2rms
rms rms rms rms( ) VRP t I V I R I R

Z Z
⎛ ⎞⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (12.4.6) 

 
In Figure 12.4.1, we plot the average power as a function of the driving angular 
frequency ω.  

 
 

Figure 12.4.1 Average power as a function of frequency in a driven series RLC circuit. 
 
We see that ( )P t  attains the maximum when cos 1φ = , or Z R= , which is the 
resonance condition. At resonance, we have 
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2

rms
rms rmsmax

VP I V
R

= =  (12.4.7) 

 
12.4.1 Width of the Peak 
 
The peak has a line width. One way to characterize the width is to define , 
where 

∆ω ω ω+ −= −
ω±  are the values of the driving angular frequency such that the power is equal to 

half its maximum power at resonance. This is called full width at half maximum, as 
illustrated in Figure 12.4.2. The width ω∆  increases with resistance R. 
 

 
Figure 12.4.2 Width of the peak 

 
To find ω∆ , it is instructive to first rewrite the average power ( )P t  as 
 

 
2 2

0 0
2 2 2 2 2 2

0

1 1( )
2 ( 1/ ) 2 (

V R V RP t
R L C R L

ω
ω ω ω ω ω

= =
+ − + −

2

2 2)
 (12.4.8) 

 
with 2

0max
( ) / 2P t V R= . The condition for finding ω±  is 

 

 
2 2 2

0 0
2 2 2 2 2 2max

0

1 1( ) ( )
2 4 2

V V RP t P t      
R R L

ω
( )ω ωω ω ω± ±

= ⇒ = =
+ −

 (12.4.9) 

 
which gives 
 

 
2

2 2 2
0( ) R

L
ωω ω ⎛ ⎞− = ⎜ ⎟

⎝ ⎠
 (12.4.10) 

 
Taking square roots yields two solutions, which we analyze separately. 
 
case 1:  Taking the positive root leads to 
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 2 2
0

R
L
ωω ω +

+ − = +  (12.4.11) 

 
Solving the quadratic equation, the solution with positive root is 
 

 
2

2
02 4

R R
L L

ω ω+
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (12.4.12) 

 
Case 2: Taking the negative root of Eq. (12.4.10) gives 
 

 2 2
0

R
L
ωω ω −

− − = −  (12.4.13) 

 
The solution to this quadratic equation with positive root is 
 

 
2

2
02 4

R R
L L

ω ω−
⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (12.4.14) 

 
The width at half maximum is then 
 

 R
L

∆ω ω ω+ −= − =  (12.4.15) 

 
Once the width ∆ω is known, the quality factor Q  (not to be confused with charge) can 
be obtained as 
 

 0 0LQ
R

ω ω
ω

= =
∆

 (12.4.16) 

 
Comparing the above equation with Eq. (11.8.17), we see that both expressions agree 
with each other in the limit where the resistance is small, and 2 2

0 0( / 2 )R Lω ω ω′ = − ≈ . 
 
 
12.5 Transformer 
 
A transformer is a device used to increase or decrease the AC voltage in a circuit. A 
typical device consists of two coils of wire, a primary and a secondary, wound around an 
iron core, as illustrated in Figure 12.5.1. The primary coil, with  turns, is connected to 
alternating voltage source . The secondary coil has N

1N

1( )V t 2 turns and is connected to a 
“load resistance” 2R . The way transformers operate is based on the principle that an 
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alternating current in the primary coil will induce an alternating emf on the secondary 
coil due to their mutual inductance. 
 

 
 

Figure 12.5.1 A transformer 
 
 
In the primary circuit, neglecting the small resistance in the coil, Faraday’s law of 
induction implies 
 

 1 1
BdV N

dt
Φ

= −  (12.5.1) 

 
where  is the magnetic flux through one turn of the primary coil. The iron core, which 
extends from the primary to the secondary coils, serves to increase the magnetic field 
produced by the current in the primary coil and ensure that nearly all the magnetic flux 
through the primary coil also passes through each turn of the secondary coil. Thus, the 
voltage (or induced emf) across the secondary coil is 

BΦ

 

 2 2
BdV N

dt
Φ

= −  (12.5.2) 

 
In the case of an ideal transformer, power loss due to Joule heating can be ignored, so 
that the power supplied by the primary coil is completely transferred to the secondary coil: 
 
 1 1 2 2I V I V=  (12.5.3) 
 
In addition, no magnetic flux leaks out from the iron core, and the flux  through each 
turn is the same in both the primary and the secondary coils. Combining the two 
expressions, we are lead to the transformer equation: 

BΦ

 

 2

1 1

V N
V N

= 2  (12.5.4) 

 
By combining the two equations above, the transformation of currents in the two coils 
may be obtained as: 
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 2 2
1 2

1 1

V N
2I I

V N
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

I

1 1 1

1 1

 (12.5.5) 

 
Thus, we see that the ratio of the output voltage to the input voltage is determined by the 
turn ratio . If , then , which means that the output voltage in the 
second coil is greater than the input voltage in the primary coil. A transformer with 

 is called a step-up transformer. On the other hand, if 

2 /N N 2N N> 2V V>

2N N> 2N N< , then , and 
the output voltage is smaller than the input. A transformer with 

2V V< 1

12N N<  is called a step-
down transformer. 
 
  
12.6 Parallel RLC Circuit 

 
Consider the parallel RLC circuit illustrated in Figure 12.6.1. The AC voltage source is 

0( ) sinV t V tω= . 
 

 
 

Figure 12.6.1 Parallel RLC circuit. 
 
Unlike the series RLC circuit, the instantaneous voltages across all three circuit elements 
R, L, and C are the same, and each voltage is in phase with the current through the 
resistor. However, the currents through each element will be different.  
 
In analyzing this circuit, we make use of the results discussed in Sections 12.2 – 12.4. 
The current in the resistor is  
 

 0
0

( )( ) sin sinR
VV t

RI t t I t
R R

ω ω= = =  (12.6.1) 

 
where 0 0 /RI V R= . The voltage across the inductor is  
 

 0( ) ( ) sin L
L

dIV t V t V t L
dt

ω= = =  (12.6.2) 

which gives 
 

 0 0 0
00

( ) sin ' ' cos sin sin
2 2

t

L L
L

V V VI t t dt t t I t
L L X

π πω ω ω
ω

⎛ ⎞ ⎛= = − = − =⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠∫ ω ⎞− ⎟  (12.6.3) 
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where 0 0 /L LI V X=  and LX Lω=  is the inductive reactance.  
 
Similarly, the voltage across the capacitor is 0( ) sin ( ) /CV t V t Q t Cω= = , which implies 
 

 0
0 0( ) cos sin sin

2 2C C
C

VdQI t CV t t I t
dt X

π πω ω ω ω⎛ ⎞ ⎛= = = + = +⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

⎞
⎟  (12.6.4) 

 
where 0 0 /C CI V X=  and 1/CX Cω=  is the capacitive reactance. 
 
Using Kirchhoff’s junction rule, the total current in the circuit is simply the sum of all 
three currents. 
 

 
0 0 0

( ) ( ) ( ) ( )

sin sin sin
2 2

R L C

R L C

I t I t I t I t

I t I t I tπ πω ω ω

= + +

⎛ ⎞ ⎛= + − + +⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

 (12.6.5) 

 
The currents can be represented with the phasor diagram shown in Figure 12.6.2. 
 

 
 

Figure 12.6.2 Phasor diagram for the parallel RLC circuit 
 
From the phasor diagram, we see that 
 
 0 0 0R L C0I I I I= + +  (12.6.6) 
 
and the maximum amplitude of the total current, 0I ,  can be obtained as 
 

 

2 2
0 0 0 0 0 0 0 0

22

0 02 2

| | | | ( )

1 1 1 1 1

R L C R C L

C L

I I I I I I I I

V C V
R L R X X

ω
ω

= = + + = + −

⎛⎛ ⎞= + − = + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎞  (12.6.7) 
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Note however, since ( )RI t , ( )LI t and ( )CI t are not in phase with one another, 0I  is not 
equal to the sum of the maximum amplitudes of the three currents: 
 
 0 0 0R L C 0I I I I≠ + +  (12.6.8) 
 
With 0 0 /I V Z= , the (inverse) impedance of the circuit is given by  
 

 
22

2 2

1 1 1 1 1 1

C L

C
Z R L R X X

ω
ω

⎛ ⎞⎛ ⎞= + − = + −⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎟  (12.6.9) 

 
The relationship between Z , R , LX and CX  is shown in Figure 12.6.3. 
 

 
 

Figure 12.6.3 Relationship between Z , R , LX and CX  in a parallel RLC circuit. 
 
From the figure or the phasor diagram shown in Figure 12.6.2, we see that the phase can 
be obtained as 
 

 

0 0

0 0

00

1 1 1tan C L C L

R C L

V V
I I X X R R CVI X X L

R

φ ω
ω

−
⎛ ⎞ ⎛ ⎞− ⎛= = = − = −⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠⎝ ⎠ ⎝ ⎠

⎞
⎟  (12.6.10) 

 
The resonance condition for the parallel RLC circuit is given by 0φ = , which implies 
 

 1 1

C LX X
=  (12.6.11) 

 
The resonant frequency is  
 

 0
1
LC

ω =  (12.6.12) 

 
which is the same as for the series RLC circuit. From Eq. (12.6.9), we readily see that 
1/ Z  is minimum (or Z  is maximum) at resonance. The current in the inductor exactly 
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cancels out the current in the capacitor, so that the total current in the circuit reaches a 
minimum, and is equal to the current in the resistor: 
 

 0
0

VI
R

=  (12.6.13) 

 
As in the series RLC circuit, power is dissipated only through the resistor. The average 
power is 
 

 
2 2 2

2 20 0 0( ) ( ) ( ) ( ) sin
2 2R R

V V V ZP t I t V t I t R t
R R Z R

ω ⎛= = = = = ⎜
⎝ ⎠

⎞
⎟  (12.6.14) 

 
Thus, the power factor in this case is  
 

 2 2
0

( ) 1power factor cos
/ 2

1

P t Z
V Z R RR C

L

φ

ω
ω

= = = =
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 (12.6.15) 

 
 
12.7 Summary 
 

• In an AC circuit with a sinusoidal voltage source 0( ) sinV t V tω= , the current is 
given by 0( ) sin( )I t I tω φ= − , where 0I  is the amplitude and φ  is the phase 
constant. For simple circuit with only one element (a resistor, a capacitor or an 
inductor) connected to the voltage source, the results are as follows: 

 
 

Circuit Elements Resistance 
/Reactance 

Current 
Amplitude  Phase angle φ  

 
R 0

0R
VI
R

=  0 

 
LX Lω=  0

0L
L

VI
X

=  / 2π  
current lags voltage by 90  °

 

1
CX

Cω
=  0

0C
C

VI
X

=  / 2π−  
current leads voltage by  90°

  
where LX  is the inductive reactance and CX  is the capacitive reactance. 

  
• For circuits which have more than one circuit element connected in series, the 

results are 
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Circuit Elements Impedance Z Current Amplitude Phase angle φ  

 
2 2

LR X+  
0

0 2 2
L

VI
R X

=
+

 0
2
πφ< <  

 
2 2

CR X+  
0

0 2 2
C

VI
R X

=
+

 0
2
π φ− < <  

 
2 2( )L CR X X+ −

0
0 2 2( )L C

VI
R X X

=
+ −

0  if  
0  if  

L C

L C

X X
X X

φ
φ

> >
< <

 

 
where Z is the impedance Z of the circuit. For a series RLC circuit, we have 

 

 ( )22
L CZ R X X= + −   

 
The phase angle between the voltage and the current in an AC circuit is  

 

 1tan L CX X
R

φ − −⎛= ⎜
⎝ ⎠

⎞
⎟   

 
• In the parallel RLC circuit, the impedance is given by 
 

 
22

2 2

1 1 1 1 1 1

C L

C
Z R L R X X

ω
ω

⎛ ⎞⎛ ⎞= + − = + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

  
 and the phase is  
 

 1 11 1 1tan tan
C L

R R C
X X L

φ ω
ω

− −⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞= − = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠⎣ ⎦
 

 
• The rms (root mean square) voltage and current in an AC circuit are given by 

 
0 0

rms rms,         
2 2

V IV I= =  

 
• The average power of an AC circuit is  
 

 rms rms( ) cosP t I V φ=   
 
 where cosφ  is known as the power factor.  
 

• The resonant frequency 0ω  is 
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 0
1
LC

ω =   

 
At resonance, the current in the series RLC circuit reaches the maximum, but the 
current in the parallel RLC circuit is at a minimum.  

 
• The transformer equation is  

 

 2

1 1

V N
V N

= 2   

 
where  is the voltage source in the primary coil with  turns, and  is the 
output voltage in the secondary coil with turns. A transformer with  is 
called a step-up transformer, and a transformer with 

1V 1N 2V

2N 2 1N N>

2N N1<  is called a step-down 
transformer. 

 
 
12.8 Problem-Solving Tips 

 
In this chapter, we have seen how phasors provide a powerful tool for analyzing the AC 
circuits.  Below are some important tips: 
 
1. Keep in mind the phase relationships for simple circuits 
 
 (1) For a resistor, the voltage and the phase are always in phase. 
 (2) For an inductor, the current lags the voltage by . 90°
 (3) For a capacitor, the current leads to voltage by . 90°
 
2. When circuit elements are connected in series, the instantaneous current is the same for 

all elements, and the instantaneous voltages across the elements are out of phase. On 
the other hand, when circuit elements are connected in parallel, the instantaneous 
voltage is the same for all elements, and the instantaneous currents across the elements 
are out of phase.  

 
3. For series connection, draw a phasor diagram for the voltages. The amplitudes of the 

voltage drop across all the circuit elements involved should be represented with 
phasors. In Figure 12.8.1 the phasor diagram for a series RLC circuit is shown for both 
the inductive case L CX X>  and the capacitive case L CX X< .  
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Figure 12.8.1 Phasor diagram for the series RLC circuit for (a) L CX X> and (b) 

L CX X< . 
 

From Figure 12.8.1(a), we see that  in the inductive case and  leads 0L CV V> 0 0V 0I  by a 
phaseφ . On the other hand, in the capacitive case shown in Figure 12.8.1(b),  

and 
0 0C LV V>

0I  leads  by a phase0V φ .  
 

4. When , or 0L CV V= 0 0φ = , the circuit is at resonance. The corresponding resonant 

frequency is 0 1/ LCω = , and the power delivered to the resistor is a maximum.  
 
5.  For parallel connection, draw a phasor diagram for the currents. The amplitudes of the 

currents across all the circuit elements involved should be represented with phasors. In 
Figure 12.8.2 the phasor diagram for a parallel RLC circuit is shown for both the 
inductive case L CX X>  and the capacitive case L CX X< .  

 

  
Figure 12.8.2 Phasor diagram for the parallel RLC circuit for (a) L CX X> and (b) 

L CX X< . 
 

From Figure 12.8.2(a), we see that 0L C0I I>  in the inductive case and  leads 0V 0I  by a 
phaseφ . On the other hand, in the capacitive case shown in Figure 12.8.2(b), 0 0C LI I>  

and 0I  leads  by a phase0V φ .  
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12.9 Solved Problems 

 
12.9.1 RLC Series Circuit 
 
A series RLC circuit with , C = 100160 mHL = Fµ , and 40.0R = Ω  is connected to a 
sinusoidal voltage ( )( ) 40.0V sinV t tω= , with 200 rad/sω = . 
 
(a) What is the impedance of the circuit? 
 
(b) Let the current at any instant in the circuit be ( ) ( )0 sinI t I tω φ= − . Find I0. 
 
(c)  What is the phaseφ ? 
 
Solution: 
 
(a) The impedance of a series RLC circuit is given by 
 

 ( )22
L CZ R X X= + −  (12.9.1) 

 
where  
 LX Lω=  (12.9.2) 
and  

 1
CX

Cω
=  (12.9.3) 

 
are the inductive reactance and the capacitive reactance, respectively. Since the general 
expression of the voltage source is 0( ) sin( )V t V tω= , where V0 is the maximum output 
voltage and ω is the angular frequency, we have 0 40 VV = and 200 rad/sω = . Thus, the 
impedance Z becomes 
 

  

2
2

6

1(40.0 ) (200 rad/s)(0.160 H)
(200 rad/s)(100 10  F)

43.9

Z −

⎛ ⎞
= Ω + −⎜ ⎟×⎝ ⎠
= Ω

 (12.9.4) 

   
(b) With , the amplitude of the current is given by  0 40.0VV =
 

 0
0

40.0 V 0.911A
43.9

VI
Z

= = =
Ω

 (12.9.5) 
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(c) The phase between the current and the voltage is determined by 
 

 
( )( )

( )( )

1 1

6
1

1

tan tan

1200 rad/s 0.160 H
200 rad/s 100 10  F

tan 24.2
40.0 

L C
LX X C

R R

ω
ωφ − −

−
−

⎛ ⎞−⎜ ⎟−⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎝ ⎠
⎛ ⎞−⎜ ⎟×⎜ ⎟= =
⎜ ⎟Ω
⎜ ⎟⎜ ⎟
⎝ ⎠

− °

 (12.9.6) 

 
12.9.2 RLC Series Circuit 
 
Suppose an AC generator with ( ) ( ) ( )150V sin 100V t t= is connected to a series RLC 
circuit with , , and 40.0 R = Ω 80.0 mHL = 50.0 FC µ= , as shown in Figure 12.9.1. 
 

                                  Figure 12.9.1 RLC series circuit 
 
(a)  Calculate ,  and , the maximum of the voltage drops across each circuit 
element. 

0RV 0LV 0CV

 
(b) Calculate the maximum potential difference across the inductor and the capacitor 
between points b and d shown in Figure 12.9.1. 
 
Solutions: 
 
(a) The inductive reactance, capacitive reactance and the impedance of the circuit are 
given by 
 

 
( )( )6

1 1 200
100 rad/s 50.0 10  FCX

Cω −
= = =

×
Ω  (12.9.7) 

 
 ( )( )3100 rad/s 80.0 10  H 8.00LX Lω −= = × = Ω  (12.9.8) 
 
and  
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 ( ) ( ) ( )2 2 22 40.0 8.00 200 196L CZ R X X= + − = Ω + Ω − Ω = Ω  (12.9.9) 
 
respectively. Therefore, the corresponding maximum current amplitude is  
 

 0
0

150 V 0.765A
196 

VI
Z

= = =
Ω

 (12.9.10) 

 
The maximum voltage across the resistance would be just the product of maximum 
current and the resistance: 
 
 ( )( )0 0 0.765 A 40.0 30.6VRV I R= = Ω =  (12.9.11) 
 
Similarly, the maximum voltage across the inductor is 
 
 ( )( )0 0 0.765 A 8.00 6.12VL LV I X= = Ω =  (12.9.12) 
 
and the maximum voltage across the capacitor is 
  
 ( )( )0 0 0.765 A 200 153 VC CV I X= = Ω =  (12.9.13) 
 
Note that the maximum input voltage V0 is related to ,  and  by 0RV 0LV 0CV
 
 2

0 0 0 0(R L CV V V V= + − 2)  (12.9.14) 
 
 (b) From b to d, the maximum voltage would be the difference between  and : 0LV 0CV
 
  (12.9.15) 0 0 0 0| | | | | | | 6.12 V 153 V| 147 Vbd L C L CV V V V V= + = − = − =
 
 
 
12.9.3  Resonance 
 
A sinusoidal voltage ( ) ( )200V sinV t tω=  is applied to a series RLC circuit with 

,  and R = 20.0 10.0 mHL = 100 nFC = Ω . Find the following quantities:  
 
(a) the resonant frequency,  
 
(b) the amplitude of the current at resonance, 
 
(c) the quality factorQ  of the circuit, and 
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(d) the amplitude of the voltage across the inductor at the resonant frequency. 
 
 
Solution: 
 
(a) The resonant frequency for the circuit is given by 
 

 ( )( )
0

3 9

1 1 1 1 5033Hz
2 2 2 10.0 10  H 100 10  F

f
LC

ω
π π π − −

= = = =
× ×

 (12.9.16) 

  
 
(b) At resonance, the current is 
 

 0
0

200 V 10.0 A
20.0 

VI
R

= = =
Ω

 (12.9.17) 

 
(c) The quality factor Q of the circuit is given by 
 

 
( )( )

( )

1 3
0

2 5033 s 10.0 10  H
15.8

20.0 
LQ

R
πω

− −×
= = =

Ω
 (12.9.18) 

 
(d) At resonance, the amplitude of the voltage across the inductor is 
 
 ( ) ( )( )1 3

0 0 0 0 10.0 A 2 5033 s 10.0 10  H 3.16 10 VL LV I X I Lω π − −= = = × = × 3  (12.9.19) 
 
 
12.9.4  RL High-Pass Filter 
 
An RL high-pass filter (circuit that filters out low-frequency AC currents) can be 
represented by the circuit in Figure 12.9.2, where R is the internal resistance of the 
inductor. 

 
 

Figure 12.9.2 RL filter 
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(a) Find , the ratio of the maximum output voltage  to the maximum input 
voltage . 

20 10/V V 20V

10V
 
(b) Suppose , and 15.0 r = Ω 10R = Ω 250 mHL = . Find the frequency at which 

. 20 10/ 1/V V = 2
 
Solution: 
 
(a) The impedance for the input circuit is 2

1 ( ) L
2Z R r X= + +  where LX Lω=  and 

2
2 L

2Z R X= +  for the output circuit. The maximum current is given by 
 

 10 0
0 2

1 ( ) 2
L

V VI
Z R r X

= =
+ +

 (12.9.20) 

 
Similarly, the maximum output voltage is related to the output impedance by  
 
 2

20 0 2 0 LV I Z I R X= = + 2  (12.9.21) 
 
This implies 

 
2 2

20
2

10 ( )
L

L

R XV
V 2R r X

+
=

+ +
 (12.9.22) 

(b) For , we have  20 10/ 1/V V = 2

 
2 2 2 2

2 2

1 ( )    
( ) 4 3

L
L

L

R X 4R r RX
R r X

+
= ⇒ =

+ +
+ −  (12.9.23) 

 
Since 2LX L fLω π= = , the frequency which yields this ratio is 
 

 
( )

( ) ( )2 210.0 15.0 4 10.0 1 5.51Hz
2 2 0.250 H 3

LXf
Lπ π

Ω + Ω − Ω
= = =  (12.9.24) 

 
 
 
12.9.5 RLC Circuit 
 
Consider the circuit shown in Figure 12.9.3. The sinusoidal voltage source is 

0( ) sinV t V tω= . If both switches  and are closed initially, find the following 
quantities, ignoring the transient effect and assuming that

1S 2S
R , L ,  and 0V ω are known: 
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                   Figure 12.9.3 
 

(a) the current ( )I t as a function of time, 
 
(b) the average power delivered to the circuit, 
 
(c) the current as a function of time a long time after only  is opened. 1S
 
(d) the capacitance C if both  and are opened for a long time, with the current and 

voltage in phase. 
1S 2S

 
(e) the impedance of the circuit when both  and are opened. 1S 2S
 
(f) the maximum energy stored in the capacitor during oscillations. 
 
(g) the maximum energy stored in the inductor during oscillations. 
 
(h) the phase difference between the current and the voltage if the frequency of  is 
doubled. 

( )V t

 
(i) the frequency at which the inductive reactance LX  is equal to half the capacitive 
reactance CX . 
 
 
Solutions: 
 
(a) When both switches S1 and S2 are closed, the current goes through only the generator 
and the resistor, so the total impedance of the circuit is R and the current is  
 

 0( ) sinR
VI t t
R

ω=  (12.9.25) 

(b) The average power is given by 
 

 
2 2

20( ) ( ) ( ) sin
2R

VP t I t V t t 0V
R R

ω= = =  (12.9.26) 
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(c) If only S1 is opened, after a long time the current will pass through the generator, the 
resistor and the inductor. For this RL circuit, the impedance becomes 
 

 
2 2 2 2

1 1

L

Z
2R X R ω

= =
+ + L

 (12.9.27) 

 
and the phase angle φ  is  

 1tan L
R

ωφ − ⎛= ⎜
⎝ ⎠

⎞
⎟  (12.9.28) 

 
Thus, the current as a function of time is  
 

 10
0 2 2 2

( ) sin( ) sin tanV LI t I t t
RR L

ωω φ ω
ω

−⎛= − = −⎜
⎝ ⎠+

⎞
⎟  (12.9.29) 

 
Note that in the limit of vanishing resistance 0R = , / 2φ π= , and we recover the 
expected result for a purely inductive circuit. 
 
(d) If both switches are opened, then this would be a driven RLC circuit, with the phase 
angle φ  given by 

 

1

tan L C
LX X C

R R

ω
ωφ

−−
= =  (12.9.30) 

 
If the current and the voltage are in phase, then 0φ = , implying tan 0φ = . Let the 
corresponding angular frequency be 0ω ; we then obtain 
 

 0
0

1L
C

ω
ω

=  (12.9.31) 

and the capacitance is  

 2
0

1C
Lω

=  (12.9.32) 

 
(e) From (d), we see that when both switches are opened, the circuit is at resonance 
with L CX X= . Thus, the impedance of the circuit becomes 
 
 2 ( )L C

2Z R X X R= + − =  (12.9.33) 
 
(f) The electric energy stored in the capacitor is  
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 21 1 ( )
2 2E CU CV C IX= = 2

C  (12.9.34) 

 
It attains maximum when the current is at its maximum 0I : 
 

 
2 2

2 2 0
,max 0 2 2 2

0

1 1 1
2 2C C

VU CI X C 0

2
V L

R C Rω
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 (12.9.35) 

 
where we have used 2

0 1/ LCω = . 
 
(g) The maximum energy stored in the inductor is given by 
 

 
2

2 0
,max 0 2

1
2 2L

LVU LI
R

= =  (12.9.36) 

 
(h) If the frequency of the voltage source is doubled, i.e., 02 1/ LCω ω= = , then the 
phase becomes 
 

( ) ( )1 1 1
2 / / 21/ 3tan tan tan

2

LC L LC CL C L
R R R

ω ωφ − − −
⎛ ⎞− ⎛ ⎞−⎛ ⎞ ⎜ ⎟= = = ⎜⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

C ⎟⎟  (12.9.37) 

 
(i) If the inductive reactance is one-half the capacitive reactance,  
 

 1        
2 2L CX X L

C
ω

ω
⎛= ⇒ = ⎜
⎝ ⎠

1 1 ⎞
⎟  (12.9.38) 

then 
 

 01
2 2LC

ωω = =  (12.9.39) 

 
12.9.6 RL Filter 
 
The circuit shown in Figure 12.9.4 represents an RL filter.  
 

             Figure 12.9.4 
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Let the inductance be L = 400 mH, and the input voltage ( )in 20.0V sinV tω=  , where 
200 rad/sω = . 

 
(a) What is the value of R such that the output voltage lags behind the input voltage 
by ?  30.0°
  
(b) Find the ratio of the amplitude of the output and the input voltages. What type of filter 
is this circuit, high-pass or low-pass? 
 
(c) If the positions of the resistor and the inductor are switched, would the circuit be a 
high-pass or a low-pass filter?  
 
Solutions: 
 
(a) The phase relationship between  and  is given by LV RV
 

 tan L L

R R

V IX L
V IX R

ωφ = = =  (12.9.40) 

 
Thus, we have 

 ( )( )200rad/s 0.400H
139

tan tan 30.0
LR ω
φ

= = =
°

Ω  (12.9.41) 

 
(b) The ratio is given by 
 

 out
2 2

in in

cos cos30.0 0.866.R

L

V V R
V V R X

φ= = = = ° =
+

 (12.9.42) 

 
The circuit is a low-pass filter, since the ratio decreases with increasing out in/V V ω .  
 
(c) In this case, the circuit diagram is 
 

 
 

Figure 12.9.5 RL high-pass filter 
 
The ratio of the output voltage to the input voltage would be 
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1/ 222 2
out

2 2 2 2 2
in in

1L L

L

V V X L R
V V LR X R L

ω
ωω

−
⎡ ⎤⎛ ⎞= = = = +⎢ ⎥⎜ ⎟

⎝ ⎠+ + ⎢ ⎥⎣ ⎦
 

 
The circuit is a high-pass filter, since the ratio approaches one in the large-out in/V V ω  
limit.  
 
 
12.10 Conceptual Questions 
 
1. Consider a purely capacitive circuit (a capacitor connected to an AC source). 
 
(a) How does the capacitive reactance change if the driving frequency is doubled? 
halved? 
 
(b) Are there any times when the capacitor is supplying power to the AC source? 
 
 
2. If the applied voltage leads the current in a series RLC circuit, is the frequency above 
or below resonance? 
 
3. Consider the phasor diagram shown in Figure 12.10.1 for an RLC circuit. 
 

 
 
(a) Is the driving frequency above or below the resonant frequency? 
 
(b) Draw the phasor  associated with the amplitude of the applied voltage. 0V
 
(c) Give an estimate of the phase φ  between the applied AC voltage and the current. 
 
 
4. How does the power factor in an RLC circuit change with resistance R, inductance L 
and capacitance C?  
 
5. Can a battery be used as the primary voltage source in a transformer?  
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6. If the power factor in an RLC circuit is cos 1/ 2φ = , can you tell whether the current 
leading or lagging the voltage? Explain. 
 
 
 
12.11 Additional Problems 
 
12.11.1 Reactance of a Capacitor and an Inductor  
 
(a) A 0.5 FC µ= − capacitor is connected, as shown in Figure 12.11.1(a), to an AC 
generator with .  What is the amplitude 0 300 VV = 0I  of the resulting alternating current 
if the angular frequency ω is (i) 100 rad/s, and (ii) 1000 rad/s? 
 

  
 

Figure 12.11.1 (a) A purely capacitive circuit, and (b) a purely inductive circuit. 
 
(b) A 45-mH inductor is connected, as shown in Figure 12.10.1(b), to an AC generator 
with . The inductor has a reactance 0 300 VV = 1300 LX = Ω .  What must be  
 
(i) the applied angular frequency ω and  
 
(ii) the applied frequency f for this to be true?   
 
(iii)  What is the amplitude 0I  of the resulting alternating current?   
 
(c) At what frequency f would our 0.5-µF capacitor and our 45-mH inductor have the 
same reactance? What would this reactance be?  How would this frequency compare to 
the natural resonant frequency of free oscillations if the components were connected as 
an LC oscillator with zero resistance?   
 
 
12.11.2 Driven RLC Circuit Near Resonance 
 
The circuit shown in Figure 12.11.2 contains an inductor L, a capacitor C, and a resistor R 
in series with an AC generator which provides a source of sinusoidally varying emf 

0( ) sinV t V tω= .  
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Figure 12.11.2 
 
This emf drives current 0( ) sin( )I t I tω φ= − through the circuit at angular frequencyω .  
 
(a) At what angular frequency ω will the circuit resonate with maximum response, as 
measured by the amplitude 0I  of the current in the circuit?  What is the value of the 
maximum current amplitude maxI ?  
 
(b) What is the value of the phase angle φ  between  and ( )V t ( )I t at this resonant 
frequency? 
 
(c) Suppose the frequency ω is increased from the resonance value until the amplitude 0I  

of the current decreases from maxI  to max / 2I . Now what is the phase difference φ  
between the emf and the current?  Does the current lead or lag the emf?  
 
 
12.11.3 RC Circuit 
 
A series RC circuit with and34.0 10R = × Ω 0.40 FC µ=  is connected to an AC voltage 
source ( ) (100 V)sinV t tω= , with 200 rad/sω = . 
 
(a) What is the rms current in the circuit? 
 
(b) What is the phase between the voltage and the current? 
 
(c) Find the power dissipated in the circuit. 
 
(d) Find the voltage drop both across the resistor and the capacitor. 
 
 
12.11.4 Black Box 
 
An AC voltage source is connected to a “black box” which contains a circuit, as shown in 
Figure 12.11.3.  
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Figure 12.11.3 A “black box” connected to an AC voltage source. 
 
The elements in the circuit and their arrangement, however, are unknown. Measurements 
outside the black box provide the following information: 
 

 
( ) (80 V)sin         
( ) (1.6 A)sin( 45 )

V t t
I t t

ω
ω

=
= + °

 

 
(a) Does the current lead or lag the voltage? 
 
(b) Is the circuit in the black box largely capacitive or inductive? 
 
(c) Is the circuit in the black box at resonance? 
 
(d) What is the power factor? 
 
(e) Does the box contain a resistor? A capacitor? An inductor? 
 
(f) Compute the average power delivered to the black box by the AC source. 
 
 
12.11.5 Parallel RL Circuit 
 
Consider the parallel RL circuit shown in Figure 12.11.4. 
 

 
 

Figure 12.11.4 Parallel RL circuit 
 

The AC voltage source is 0( ) sinV t V tω= . 
 
(a) Find the current across the resistor. 
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(b) Find the current across the inductor. 
 
(c) What is the magnitude of the total current? 
 
(d) Find the impedance of the circuit. 
 
(e) What is the phase angle between the current and the voltage? 
 
 
12.11.6 LC Circuit 
 
Suppose at  the capacitor in the LC circuit is fully charged to . At a later time 

 , where  is the period of the LC oscillation, find the ratio of each of the 
following quantities to its maximum value: 

0t = 0Q
/ 6t T= T

 
(a) charge on the capacitor, 
 
(b) energy stored in the capacitor, 
 
(c) current in the inductor, and  
 
(d) energy in the inductor. 
 
 
12.11.7 Parallel RC Circuit 
 
Consider the parallel RC circuit shown in Figure 12.11.5. 
 

 
 

Figure 12.11.5 Parallel RC circuit 
 

The AC voltage source is 0( ) sinV t V tω= . 
 
(a) Find the current across the resistor. 
 
(b) Find the current across the capacitor. 
 
(c) What is the magnitude of the total current? 
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(d) Find the impedance of the circuit. 
 
(e) What is the phase angle between the current and the voltage? 
 
 
12.11.8 Power Dissipation 
 
A series RLC circuit with , 10.0 R = Ω 400 mHL =  and 2.0 FC µ=  is connected to an 
AC voltage source which has a maximum amplitude 0 100 VV = .  
 
(a) What is the resonant frequency 0ω ?  
 
(b) Find the rms current at resonance. 
 
(c) Let the driving frequency be 4000 rad/sω = . Compute CX , LX , Z and φ . 
 
 
12.11.9  FM Antenna 
 
An FM antenna circuit (shown in Figure 12.11.6) has an inductance , a 
capacitance  and a resistance 

610  HL −=
1210  FC −= 100R = Ω . A radio signal induces a 

sinusoidally  alternating emf in the antenna with an amplitude of  .   510  V−

 

 
Figure 12.11.6 

 
(a)  For what angular frequency 0ω (radians/sec) of the incoming waves will the circuit 
be “in tune”-- that is, for what 0ω will the current in the circuit be a maximum.   
 
(b)  What is the quality factor Q  of the resonance? 
 
(c)  Assuming that the incoming wave is “in tune,” what will be the amplitude of the 
current in the circuit at this “in tune” frequency.   
 
(d)  What is the amplitude of the potential difference across the capacitor at this “in 
tune” frequency? 
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12.11.10 Driven RLC Circuit 
 
Suppose you want a series RLC  circuit to tune to your favorite FM radio station that 
broadcasts at a frequency of 89.7 . You would like to avoid the obnoxious station 
that broadcasts at 89 . In order to achieve this, for a given input voltage signal 
from your antenna, you want the width of your resonance to be narrow enough at 

 such that the current flowing in your circuit will be times less at 
than at 89.7 . You cannot avoid having a resistance of , and 

practical considerations also dictate that you use the minimum 

MHz
.5MHz

89.7 MHz 210 −

89.5MHz MHz Ω= 1.0R
L  possible.  

 
(a) In terms of your circuit parameters, L , R  and , what is the amplitude of your 
current in your circuit as a function of the angular frequency of the input signal? 

C

 
(b) What is the angular frequency of the input signal at the desired resonance?  
 
(c) What values of L  and C must you use? 
 
(d) What is the quality factor for this resonance? 
 
(e) Show that at resonance, the ratio of the amplitude of the voltage across the inductor 
with the driving signal amplitude is the quality of the resonance. 
 
(f) Show that at resonance the ratio of the amplitude of the voltage across the capacitor 
with the driving signal amplitude is the quality of the resonance. 

 
(g) What is the time averaged power at resonance that the signal delivers to the circuit? 

 
(h) What is the phase shift for the input signal at 89 ? .5 MHz
 
(i) What is the time averaged power for the input signal at 89 ? .5 MHz
 
(j) Is the circuit capacitive or inductive at 89 ? .5MHz
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