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Alternating-Current Circuits

12.1 AC Sources

In Chapter 10 we learned that changing magnetic flux can induce an emf according to
Faraday’s law of induction. In particular, if a coil rotates in the presence of a magnetic
field, the induced emf varies sinusoidally with time and leads to an alternating current
(AC), and provides a source of AC power. The symbol for an AC voltage source is

(~)
"/
An example of an AC source is
V(t) =V, sin ot (12.1.1)

where the maximum valueV, is called the amplitude. The voltage varies between V,and
-V, since a sine function varies between +1 and —1. A graph of voltage as a function of
time is shown in Figure 12.1.1.
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Figure 12.1.1 Sinusoidal voltage source

The sine function is periodic in time. This means that the value of the voltage at time t
will be exactly the same at a later time t'=t+T where T is the period. The frequency,
f , defined as f =1/T , has the unit of inverse seconds (s™), or hertz (Hz). The angular

frequency is defined to be w =27 f .

When a voltage source is connected to an RLC circuit, energy is provided to compensate
the energy dissipation in the resistor, and the oscillation will no longer damp out. The
oscillations of charge, current and potential difference are called driven or forced
oscillations.

After an initial “transient time,” an AC current will flow in the circuit as a response to the
driving voltage source. The current, written as



1(t) = 1, sin(wt — §) (12.1.2)

will oscillate with the same frequency as the voltage source, with an amplitude 1, and
phase ¢ that depends on the driving frequency.

12.2 Simple AC circuits

Before examining the driven RLC circuit, let’s first consider the simple cases where only
one circuit element (a resistor, an inductor or a capacitor) is connected to a sinusoidal
voltage source.

12.2.1 Purely Resistive load
Consider a purely resistive circuit with a resistor connected to an AC generator, as shown

in Figure 12.2.1. (As we shall see, a purely resistive circuit corresponds to infinite
capacitance C =coand zero inductanceL=0.)

@ R § V(1)

V(1) =V, sinwt

Figure 12.2.1 A purely resistive circuit
Applying Kirchhoff’s loop rule yields

V() =V, (1) =V ()~ 1 ()R =0 (12.2.1)

where V,(t)=1,(t)R is the instantaneous voltage drop across the resistor. The
instantaneous current in the resistor is given by

Vi(t)  Vgesinot

IR(t): R R

=l Sin ot (12.2.2)

where Vp, =V,, and I, =V,,/R is the maximum current. Comparing Eq. (12.2.2) with
Eq. (12.1.2), we find ¢ =0, which means that I,(t) and V,(t) are in phase with each

other, meaning that they reach their maximum or minimum values at the same time. The
time dependence of the current and the voltage across the resistor is depicted in Figure
12.2.2(a).
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Figure 12.2.2 (a) Time dependence of 1,(t) and V,(t) across the resistor. (b) Phasor
diagram for the resistive circuit.

The behavior of 1, (t)and Vj(t) can also be represented with a phasor diagram, as shown
in Figure 12.2.2(b). A phasor is a rotating vector having the following properties:

(i) length: the length corresponds to the amplitude.
(i) angular speed: the vector rotates counterclockwise with an angular speed w.

(iii) projection: the projection of the vector along the vertical axis corresponds to the
value of the alternating quantity at time t.

We shall denote a phasor with an arrow above it. The phasor V., has a constant
magnitude of V. Its projection along the vertical direction is V,,sint, which is equal
to V,(t), the voltage drop across the resistor at time t. A similar interpretation applies

to TRO for the current passing through the resistor. From the phasor diagram, we readily
see that both the current and the voltage are in phase with each other.

The average value of current over one period can be obtained as:

(1, () :%LT 1, (O)dt :leoT I, sin ot dt :'Tﬁjgsin@ dt=0  (12.2.3)

This average vanishes because

(sinot) =T1 [ sinot dt=0 (12.2.4)

Similarly, one may find the following relations useful when averaging over one period:



(cos ot IT coswt dt =0

<sina)tcosa)t == Ismwtcoswt dt=0

)=
)

(sin’ mt) = I sin? ot dt_—j sin [th) dt==
)

(12.2.5)

2
<COSZa)t J' cos’ wt dt——j cos (Zﬁtj dt—%

T

From the above, we see that the average of the square of the current is non-vanishing:

) L 1o o _21 2t 1,
<IR(t)>—?L |R(t)dt_?j0 12,sin% ot dt =12 j sin (T ]dt—EIRO (12.2.6)
It is convenient to define the root-mean-square (rms) current as
= <|;(t)>='ﬂ (12.2.7)
V2

In a similar manner, the rms voltage can be defined as

Vims =/ (Vi (1) =\%° (12.2.8)

The rms voltage supplied to the domestic wall outlets in the United States is
V.. =120 Vata frequency f = 60 Hz.

The power dissipated in the resistor is
P. (1) =1, (Ve (O =1(OR (12.2.9)

from which the average over one period is obtained as:

1 V2
<PR(t)>:<IF22(t)R>=EIF§OR_ IrzmsR= IrmsVrms E;S (12210)

12.2.2 Purely Inductive Load

Consider now a purely inductive circuit with an inductor connected to an AC generator,
as shown in Figure 12.2.3.
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Figure 12.2.3 A purely inductive circuit
As we shall see below, a purely inductive circuit corresponds to infinite capacitance
C =wand zero resistance R =0. Applying the modified Kirchhoff’s rule for inductors,
the circuit equation reads

di,

V(t)-V () =V(t)- LW=0 (12.2.11)
which implies
ﬂ:\ﬂ:\ﬁsin wt (12.2.12)
dt L L

where V,, =V,. Integrating over the above equation, we find

I (t) :_[dlL =VT°‘[sin wt dtz—(vﬂjcoswt:(V#Ejsin(wt—%j (12.2.13)

ol w

where we have used the trigonometric identity
. T
—Ccoswt =sin (mt—gj (12.2.14)

for rewriting the last expression. Comparing Eq. (12.2.14) with Eq. (12.1.2), we see that
the amplitude of the current through the inductor is

Lo :%E:\% (12.2.15)

where
X, =l (12.2.16)
is called the inductive reactance. It has SI units of ohms (€), just like resistance.

However, unlike resistance, X, depends linearly on the angular frequency w. Thus, the
resistance to current flow increases with frequency. This is due to the fact that at higher



frequencies the current changes more rapidly than it does at lower frequencies. On the
other hand, the inductive reactance vanishes as @ approaches zero.

By comparing Eq. (12.2.14) to Eq. (12.1.2), we also find the phase constant to be
¢=+% (12.2.17)

The current and voltage plots and the corresponding phasor diagram are shown in the
Figure 12.2.4 below.
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Figure 12.2.4 (a) Time dependence of I (t) and V (t) across the inductor. (b) Phasor
diagram for the inductive circuit.

As can be seen from the figures, the current 1 (t) is out of phase with V (t)by¢=7/2;
it reaches its maximum value after V, (t) does by one quarter of a cycle. Thus, we say that

The current lags voltage by z/ 2 in a purely inductive circuit

12.2.3 Purely Capacitive Load

In the purely capacitive case, both resistance R and inductance L are zero. The circuit
diagram is shown in Figure 12.2.5.

V(t) =V, sinwt

Figure 12.2.5 A purely capacitive circuit




Again, Kirchhoff’s voltage rule implies

V(t)-V.(t)=V(t) —% =0 (12.2.18)
which yields
Q(t)=CV (t)=CV, (t)=CV,, sin wt (12.2.19)

where V., =V, . On the other hand, the current is
dQ . Vs
Ic(t):+E:wCVCOcoswt:a)CVCOsm a)t+5 (12.2.20)
where we have used the trigonometric identity
. VA
cos mt :sm(wt+5j (12.2.21)

The above equation indicates that the maximum value of the current is

|y = @CV,, —co (12.2.22)
XC
where
X =t (12.2.23)
e -

is called the capacitance reactance. It also has Sl units of ohms and represents the
effective resistance for a purely capacitive circuit. Note that X is inversely proportional

to both C and @, and diverges as  approaches zero.

By comparing Eqg. (12.2.21) to Eq. (12.1.2), the phase constant is given by
¢=—% (12.2.24)

The current and voltage plots and the corresponding phasor diagram are shown in the
Figure 12.2.6 below.



Iy | i;"() —————— [C.(f)
V('U \ i V(,(_;}

@

Figure 12.2.6 (a) Time dependence of I (t) and V_(t)across the capacitor. (b) Phasor

diagram for the capacitive circuit.

Notice that at t =0, the voltage across the capacitor is zero while the current in the circuit
is at a maximum. In fact, I.(t) reaches its maximum before V. (t) by one quarter of a

cycle (¢ =12). Thus, we say that

The current leads the voltage by #/2 in a capacitive circuit

12.3 The RLC Series Circuit

Consider now the driven series RLC circuit shown in Figure 12.3.1.

I V(1) !

MY——
@ L E V()
V(1) =V, sinwr
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| Velt) |

Figure 12.3.1 Driven series RLC Circuit

Applying Kirchhoff’s loop rule, we obtain

viy_tr_1 91 Q
VOV OV O-Ve®=VO-IR-L o~ =0

which leads to the following differential equation:

(12.3.1)




L9 R Qv sinat (12.3.2)
dt C

Assuming that the capacitor is initially uncharged so that | =+dQ/dt is proportional to
the increase of charge in the capacitor, the above equation can be rewritten as

d’Q dQ Q .
L +R—=+==V_ sinwt 12.3.3
dt? dt ¢ oo ( )

One possible solution to Eq. (12.3.3) is
Q(t) =Q, cos(wt —¢) (12.3.4)
where the amplitude and the phase are, respectively,

V, /L v,

Q = =
" JRoILY +(@*—1/LC)*  wyR?+(wL—1/wC)?
(12.3.5)
— VO
o\JRZ+(X, —X.)?
and
tan¢=l(wL— L ]: X, = Xe (12.3.6)
R @C R
The corresponding current is
(t) =+CL—?: I, sin(ot—¢) (12.3.7)
with an amplitude
l,=-Qo=- Yo (12.3.8)

JRE+ (X —Xc)?

Notice that the current has the same amplitude and phase at all points in the series RLC
circuit. On the other hand, the instantaneous voltage across each of the three circuit
elements R, L and C has a different amplitude and phase relationship with the current, as
can be seen from the phasor diagrams shown in Figure 12.3.2.
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Figure 12.3.2 Phasor diagrams for the relationships between current and voltage in (a)
the resistor, (b) the inductor, and (c) the capacitor, of a series RLC circuit.

From Figure 12.3.2, the instantaneous voltages can be obtained as:
Vi (t) =1 ,Rsin ot =V, sin wt

V. (t)=1,X, sin(a)t+%j =V, , cos ot (12.3.9)
Ve (t)=1,X.sin (mt—%} =-V,, cosawt

where
Veo=1,R, Vio=1,X, Ve =1,X¢ (12.3.10)

are the amplitudes of the voltages across the circuit elements. The sum of all three
voltages is equal to the instantaneous voltage supplied by the AC source:

V (1) =V, () +V, (1) +V, (t) (12.3.11)

Using the phasor representation, the above expression can also be written as

V, =V +V, + Vs, (12.3.12)

as shown in Figure 12.3.3 (a). Again we see that current phasor TO leads the capacitive

voltage phasor \7CO by 7 /2 but lags the inductive voltage phasor \7Lo by 7z/2. The three
voltage phasors rotate counterclockwise as time passes, with their relative positions fixed.

10
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Figure 12.3.3 (a) Phasor diagram for the series RLC circuit. (b) voltage relationship

The relationship between different voltage amplitudes is depicted in Figure 12.3.3(b).
From the Figure, we see that

Vo :|\7o |=|\7R0 +\7|_o +\7c:o |:\/VR20 +(V|_o _Vco)z
= JULR) +(1oX —1,X)? (12.3.13)
= I RE+ (X, = X )’

which leads to the same expression for Iy as that obtained in Eq. (12.3.7).

It is crucial to note that the maximum amplitude of the AC voltage source V, is not equal
to the sum of the maximum voltage amplitudes across the three circuit elements:

V£V 4V, +Ve, (12.3.14)

This is due to the fact that the voltages are not in phase with one another, and they reach
their maxima at different times.

12.3.1 Impedance

We have already seen that the inductive reactance X, =wL and capacitance reactance
X =1/ oC play the role of an effective resistance in the purely inductive and capacitive

circuits, respectively. In the series RLC circuit, the effective resistance is the impedance,
defined as

Z=\R*+ (X~ X.)’ (12.3.15)

The relationship between Z, X, and Xc can be represented by the diagram shown in
Figure 12.3.4:

11
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Figure 12.3.4 Diagrammatic representation of the relationship between Z, X and X..

The impedance also has Sl units of ohms. In terms of Z, the current may be rewritten as
V, .
I(t)=?sm(a)t—¢) (12.3.16)

Notice that the impedance Z also depends on the angular frequency , as do X, and Xc.

Using Eq. (12.3.6) for the phase ¢ and Eq. (12.3.15) for Z , we may readily recover the

limits for simple circuit (with only one element). A summary is provided in Table 12.1
below:

Simple - 1 —tant[ X Xe —\/ﬁ
Circuit R|IL| C X =ol XC_COC ¢—tan( 5 J Z =R +(X_—X¢)

purely

resistive R|0 | 0 0 0

purely

inductive | 0 | L | @ Xy 0 /2 U
purely

capacitive 00 C 0 Xe -2 Xe

Table 12.1 Simple-circuit limits of the series RLC circuit

12.3.2 Resonance

Eqg. (12.3.15) indicates that the amplitude of the current I, =V, /Z reaches a maximum
when Z is at a minimum. This occurs when X, =X, or oL=1/&C, leading to

0 = (12.3.17)

* JLC

The phenomenon at which |, reaches a maximum is called a resonance, and the
frequency @, is called the resonant frequency. At resonance, the impedance
becomesZ =R, the amplitude of the current is

12




_Vo (12.3.18)

and the phase is
$=0 (12.3.19)

as can be seen from Eqg. (12.3.5). The qualitative behavior is illustrated in Figure 12.3.5.

[{I

R

v

Ry =Ry
/\

@,

[

Figure 12.3.5 The amplitude of the current as a function of @ in the driven RLC circuit.

12.4 Power in an AC circuit

In the series RLC circuit, the instantaneous power delivered by the AC generator is given
by

PO =1{)V(H)= \;—Osin(a)t —@)-V,sinot = VZ—Ozsin(a)t —¢@)sin wt

, (12.4.1)
= V?O(sin2 @t oS ¢ —sin wt cos wt sin ¢)
where we have used the trigonometric identity
sin(wt — @) = sin wt cos ¢ — cos wt sin ¢ (12.4.2)

The time average of the power is

13



1V, 1,7V,2 . .
(P(t)) _?J'O —sin wt Cos ¢ dt—?J'O —sin ot cos wtsin ¢ dt

2 2

=V%cos¢<sin2a)t>—vzisin ¢ (sinwtcos wt) (12.4.3)

1V,
=———CO0S
2 Z ?

where Egs. (12.2.5) and (12.2.7) have been used. In terms of the rms quantities, the
average power can be rewritten as

1V.2 Vv _?

(P(®)) :E%cow:%cosqﬁ:l cos¢ (12.4.4)

rmsVrms

The quantity cos¢ is called the power factor. From Figure 12.3.4, one can readily show
that

COS¢ = R (12.4.5)
Z
Thus, we may rewrite(P(t)) as
R Vv
Pt)=1_V _ |—|=I -ms IR=]2 R 12.4.6
< ( )> rms rms(zj rms( 7 j rms ( )

In Figure 12.4.1, we plot the average power as a function of the driving angular
frequency w.

<P(t)> .
}
il R(@)
Aw
'ﬂ—r—b-
| Ry =R\ (Q,< Q)
A:a)

. R— - w
J @,

Figure 12.4.1 Average power as a function of frequency in a driven series RLC circuit.

We see that (P(t)) attains the maximum when cosg=1, or Z=R, which is the
resonance condition. At resonance, we have

14



Vims
<P>max - Irmsvrms _?

12.4.1 Width of the Peak

(12.4.7)

The peak has a line width. One way to characterize the width is to definedo =0, —@_,
where @, are the values of the driving angular frequency such that the power is equal to
half its maximum power at resonance. This is called full width at half maximum, as

illustrated in Figure 12.4.2. The width A increases with resistance R.

<P(f)=
<P(t)>

max

<P(1)> pax Aw
2 I |

w

W, o,

Figure 12.4.2 Width of the peak

To find Aw, it is instructive to first rewrite the average power(P(t)) as

V,’R 1 V,’Ro’
R*+(wL-1/wC)* 2 &*R*+L* (0" -}

1
<P(t)>=§

with (P(t)) _ =V, /2R. The condition for finding w, is

max

1

L) =(P0) = el R

= - -
o, 4R 2 &’R*+ (0 - ))?

.

which gives
Ro\’
(@ -a})? :(Tj

Taking square roots yields two solutions, which we analyze separately.

case 1: Taking the positive root leads to

(12.4.8)

(12.4.9)

(12.4.10)

15



O, -y =+—= (12.4.11)

Solving the quadratic equation, the solution with positive root is

R 2
o, =——+ (H) + 0,2 (12.4.12)

Case 2: Taking the negative root of Eq. (12.4.10) gives

0’ — 0 = —R% (12.4.13)

The solution to this quadratic equation with positive root is

2
o = —%+ (%) r oy (12.4.14)

The width at half maximum is then

(12.4.15)

Aa):ag—a)f:E
L

Once the width Aw is known, the quality factor Q (not to be confused with charge) can
be obtained as

@y _ oL
Aw R

Q= (12.4.16)

Comparing the above equation with Eq. (11.8.17), we see that both expressions agree
with each other in the limit where the resistance is small, and @' = /@ —(R/2L)* = a,.

12.5 Transformer

A transformer is a device used to increase or decrease the AC voltage in a circuit. A
typical device consists of two coils of wire, a primary and a secondary, wound around an
iron core, as illustrated in Figure 12.5.1. The primary coil, with N, turns, is connected to

alternating voltage source V,(t). The secondary coil has N, turns and is connected to a
“load resistance” R,. The way transformers operate is based on the principle that an

16



alternating current in the primary coil will induce an alternating emf on the secondary
coil due to their mutual inductance.

CTOooo

Figure 12.5.1 A transformer
In the primary circuit, neglecting the small resistance in the coil, Faraday’s law of
induction implies

do,
dt

V,=—N, (12.5.1)

where @, is the magnetic flux through one turn of the primary coil. The iron core, which

extends from the primary to the secondary coils, serves to increase the magnetic field
produced by the current in the primary coil and ensure that nearly all the magnetic flux
through the primary coil also passes through each turn of the secondary coil. Thus, the
voltage (or induced emf) across the secondary coil is

V,=-N, (12.5.2)

dt

In the case of an ideal transformer, power loss due to Joule heating can be ignored, so
that the power supplied by the primary coil is completely transferred to the secondary coil:

LV, = LV, (12.5.3)

In addition, no magnetic flux leaks out from the iron core, and the flux @, through each

turn is the same in both the primary and the secondary coils. Combining the two
expressions, we are lead to the transformer equation:

V. Ny (12.5.4)
Vl

By combining the two equations above, the transformation of currents in the two coils
may be obtained as:

17



V,), [N,
|l:[vlj|2_[ Nljlz (12.5.5)

Thus, we see that the ratio of the output voltage to the input voltage is determined by the
turn ratio N, /N,. If N, >N,, then V, >V,, which means that the output voltage in the

second coil is greater than the input voltage in the primary coil. A transformer with
N, >N, is called a step-up transformer. On the other hand, if N, <N,, then V, <V,, and

the output voltage is smaller than the input. A transformer with N, <N, is called a step-
down transformer.

12.6 Parallel RLC Circuit

Consider the parallel RLC circuit illustrated in Figure 12.6.1. The AC voltage source is
V(t)=V,sinot.

o @) Tk B C

Figure 12.6.1 Parallel RLC circuit.
Unlike the series RLC circuit, the instantaneous voltages across all three circuit elements
R, L, and C are the same, and each voltage is in phase with the current through the
resistor. However, the currents through each element will be different.

In analyzing this circuit, we make use of the results discussed in Sections 12.2 — 12.4.
The current in the resistor is

Vi _V

I5(t) = . Eosina)t:IRosina)t (12.6.1)

where I, =V, /R. The voltage across the inductor is

V )=V (t)=V,sinot = L%L (12.6.2)

which gives

1(t) :jot\%sin cot'dt'z—v—‘l)_coswt :Z—Osin(a}t—%j: ILosin(a)t—%j (12.6.3)
w L

18



where 1 ,=V,/ X and X =L is the inductive reactance.

Similarly, the voltage across the capacitor is V. (t) =V, sin ot =Q(t)/C , which implies
I (1) :%—?z @CV, cos wt :V—Osin(a)t+§j: Icosin[a)t+%j (12.6.4)
C

where 1., =V, / X, and X, =1/&C is the capacitive reactance.

Using Kirchhoff’s junction rule, the total current in the circuit is simply the sum of all
three currents.

() =T (O +1.(1) +1c (1)

. . V2 . T (12.6.5)
=lg SNt +1 ,sIn a)t—E + 1o SIN a)t+E
The currents can be represented with the phasor diagram shown in Figure 12.6.2.

T

l(:-} Iy + ‘F;,u
iy 1

Iro Vo

/ Lo

Figure 12.6.2 Phasor diagram for the parallel RLC circuit

From the phasor diagram, we see that

0

Il
Pl
o

+
'__
o

+
(@]
o

(12.6.6)

and the maximum amplitude of the total current, 1,, can be obtained as

Io =| IHo |=| IaRo + I%Lo + Iaco |:\/|F§o +(Ico - ||_o)2
2 2 (12.6.7)
R DT L
R ol R XC X,_

19




Note however, since I (t), I (t)and I (t)are not in phase with one another, I, is not
equal to the sum of the maximum amplitudes of the three currents:

1y # oo + 1o + g (12.6.8)

With 1, =V, /Z, the (inverse) impedance of the circuit is given by

2 2
1_ i2+(a,c_ij N (12.6.9)
z \R ol RZ |\ X, X,

The relationship betweenZ , R, X and X, is shown in Figure 12.6.3.

f 3

1/1Z

1/R

Figure 12.6.3 Relationship between Z , R, X and X, in a parallel RLC circuit.

From the figure or the phasor diagram shown in Figure 12.6.2, we see that the phase can
be obtained as

tan ¢ = leo=lo |_Xe X _pf L 1 =R(a)C—ij (12.6.10)
| V, X. X, ol

Vo
R

Vo Vo
X

The resonance condition for the parallel RLC circuit is given by ¢ =0, which implies

—=— 12.6.11
XX ( )
The resonant frequency is
1
W, =—— 12.6.12
TS (12612

which is the same as for the series RLC circuit. From Eqg. (12.6.9), we readily see that
1/Z is minimum (or Z is maximum) at resonance. The current in the inductor exactly
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cancels out the current in the capacitor, so that the total current in the circuit reaches a
minimum, and is equal to the current in the resistor:

V,
=— 12.6.13
R ( )

Iy

As in the series RLC circuit, power is dissipated only through the resistor. The average
power is

(P@)=(1 (t)V(t)>:<|2(t)R>:£<sin2a)t>:V—°2:V—°2(£] (12.6.14)
g § R 2R 2Z\R
Thus, the power factor in this case is
P(t
power factor = <2 ( )> 252 ! =C0S¢ (12.6.15)
Vy/2Z R 2

12.7 Summary

e In an AC circuit with a sinusoidal voltage source V (t) =V, sinwt , the current is
given by I(t)=1,sin(wt—¢), where I, is the amplitude and ¢ is the phase

constant. For simple circuit with only one element (a resistor, a capacitor or an
inductor) connected to the voltage source, the results are as follows:

A Resistance Current
Circuit Elements /Reactance Amplitude Phase angle ¢
R V,
A A A R I no :EO 0
——000,— L=@ Ho X, current lags voltage by 90°
C X . = i | = V_O —ml2
. . T WC X, current leads voltage by 90°

where X, is the inductive reactance and X is the capacitive reactance.

e For circuits which have more than one circuit element connected in series, the
results are
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Circuit Elements Impedance Z Current Amplitude Phase angle ¢

V
R L 2 2 | =— 0 i
AAA 00 JR + X/ 0 '7R2+Xf 0<¢<2
V
R C 2 2 | =——0 _r
A ” IR + X 0 '7R2+X§ 2<¢<0

) ) | v, ¢>0 if X > X,
c 2 —X.)? =
M | VR R R TR | g<0 if X, < X,

where Z is the impedance Z of the circuit. For a series RLC circuit, we have

Z =R +(X ~Xc)
The phase angle between the voltage and the current in an AC circuit is

X, —X
=tan'| —L—C
g (B

e Inthe parallel RLC circuit, the impedance is given by

1 |1 1V |1 (1 1Y
St ec-—| = || -
z \R ol R X, X,

and the phase is

et i)

e The rms (root mean square) voltage and current in an AC circuit are given by

vV

rms \/E ) rms ﬁ

e The average power of an AC circuit is
(P(t)) = 1,sV;ms COS &
where cos¢ is known as the power factor.

e The resonant frequency w, is




At resonance, the current in the series RLC circuit reaches the maximum, but the
current in the parallel RLC circuit is at a minimum.

e The transformer equation is

Va N,
Vl

where V, is the voltage source in the primary coil with N, turns, and V, is the
output voltage in the secondary coil with N, turns. A transformer with N, >N, is
called a step-up transformer, and a transformer with N, <N, is called a step-down
transformer.

12.8 Problem-Solving Tips

In this chapter, we have seen how phasors provide a powerful tool for analyzing the AC
circuits. Below are some important tips:

1. Keep in mind the phase relationships for simple circuits

(1) For a resistor, the voltage and the phase are always in phase.
(2) For an inductor, the current lags the voltage by 90°.
(3) For a capacitor, the current leads to voltage by 90°.

2. When circuit elements are connected in series, the instantaneous current is the same for
all elements, and the instantaneous voltages across the elements are out of phase. On
the other hand, when circuit elements are connected in parallel, the instantaneous
voltage is the same for all elements, and the instantaneous currents across the elements
are out of phase.

3. For series connection, draw a phasor diagram for the voltages. The amplitudes of the
voltage drop across all the circuit elements involved should be represented with
phasors. In Figure 12.8.1 the phasor diagram for a series RLC circuit is shown for both
the inductive case X, > X, and the capacitive case X, < X,.
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2 I_';Lt]"' %

o

V(.'U |

Vio,

Ve

)}:] e V.ﬁ.’" 3

Vo

¢ ¥ VitV

Figure 12.8.1 Phasor diagram for the series RLC circuit for (a) X, > X, and (b)
X, < Xe.

From Figure 12.8.1(a), we see that V,, >V, in the inductive case and V, leads I, by a
phase ¢. On the other hand, in the capacitive case shown in Figure 12.8.1(b), V., >V,
and I, leadsV, by a phase¢.

4. WhenV,, =V, or ¢=0, the circuit is at resonance. The corresponding resonant

frequency isa, =1/+/LC , and the power delivered to the resistor is a maximum.

5. For parallel connection, draw a phasor diagram for the currents. The amplitudes of the
currents across all the circuit elements involved should be represented with phasors. In
Figure 12.8.2 the phasor diagram for a parallel RLC circuit is shown for both the
inductive case X, > X, and the capacitive case X, < X.

— ‘!('{}

{('U

f.'] ;';n +1};_u
P

— "f.{l
‘!!.[l

Figure 12.8.2 Phasor diagram for the parallel RLC circuit for (a) X, > X. and (b)
X, < Xe.

From Figure 12.8.2(a), we see that |, > I, in the inductive case and V, leads I, by a

phase ¢ . On the other hand, in the capacitive case shown in Figure 12.8.2(b), 1., > |,
and I, leadsV, by a phase¢.
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12.9 Solved Problems

12.9.1 RLC Series Circuit

A series RLC circuit with L =160 mH, C = 100 xF, and R =40.0Q is connected to a
sinusoidal voltage V (t) = (40.0V)sin ot , with @ =200 rad/s.

(a) What is the impedance of the circuit?
(b) Let the current at any instant in the circuit be I (t) = 1,sin(«wt—¢). Find lo.
(c) What is the phase ¢ ?

Solution:

(a) The impedance of a series RLC circuit is given by

Z =R +(X X, (12.9.1)
where
X =l (12.9.2)
and
X, =L (12.9.3)
¢ wC -

are the inductive reactance and the capacitive reactance, respectively. Since the general
expression of the voltage source is V (t) =V, sin(at), where Vq is the maximum output

voltage and w is the angular frequency, we have V, =40 V and @ =200 rad/s. Thus, the
impedance Z becomes

2
1
(200 rad/s)(100x10°° F)J (12.9.4)

Z= \/(40.0 Q)° +((200 rad/s)(0.160 H) —

=43.9Q

(b) WithV, =40.0V, the amplitude of the current is given by

= = 0.911A (12.9.5)
43.90

Iy

V, _40.0V
Z
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(c) The phase between the current and the voltage is determined by

a)L—i

¢= tant (Mj =tan* _ oC
R R

1 (12.9.6)

(200 rad/s)(100x10°° F)
40.0

(200 rad/s)(0.160 H)—

=tan* =-24.2°

12.9.2 RLC Series Circuit

Suppose an AC generator with V (t)=(150V)sin(100t) is connected to a series RLC
circuit withR=40.0 2, L=80.0 mH, and C =50.0 uF, as shown in Figure 12.9.1.

a R b
MWy
S, L&
W(t) =V, sin@t
L ] I L]
d ' e
C Figure 12.9.1 RLC series circuit

(@) Calculate V,,, V,, and V., , the maximum of the voltage drops across each circuit
element.

(b) Calculate the maximum potential difference across the inductor and the capacitor
between points b and d shown in Figure 12.9.1.

Solutions:

(a) The inductive reactance, capacitive reactance and the impedance of the circuit are
given by

X, == ! =200 O (12.9.7)

oC (100 rad/s)(50.0x10°° F)

X, = oL =(100 rad/s)(80.0x10"° H)=8.00 Q (12.9.8)

and
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Z =R +(X —X.) = /(400 Q) +(8.002-200 Q) =196 @  (12.9.9)

respectively. Therefore, the corresponding maximum current amplitude is

|, =Yo DOV _ 5765 (12.9.10)
Z 196 Q

The maximum voltage across the resistance would be just the product of maximum
current and the resistance:

Vo = 1,R =(0.765 A)(40.0 Q) =30.6V (12.9.11)

Similarly, the maximum voltage across the inductor is

Vo = 1,X, =(0.765 A)(8.00 Q) =6.12V (12.9.12)

and the maximum voltage across the capacitor is
Vo = 1,X =(0.765 A)(200 ) =153 V (12.9.13)

Note that the maximum input voltage Vo is related toV,,, V,, and V., by

Vo = Vg’ + (Vg ~Veo)’ (12.9.14)
(b) From b to d, the maximum voltage would be the difference between V , and V., :

Vg 121V +Veo |2V, Ve, |=16.12 V—153 V| =147V (12.9.15)

12.9.3 Resonance

A sinusoidal voltage V (t)=(200V)sinwt is applied to a series RLC circuit with
L=10.0 mH, C =100 nF and R =20.0 Q. Find the following quantities:

(a) the resonant frequency,
(b) the amplitude of the current at resonance,

(c) the quality factorQ of the circuit, and
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(d) the amplitude of the voltage across the inductor at the resonant frequency.

Solution:

(a) The resonant frequency for the circuit is given by

N R S g L - =5033Hz (12.9.16)
27 2z\LC 2« (1o.ox10* H)(lOOxlO’ F)

(b) At resonance, the current is

~10.0A (12.9.17)

(c) The quality factor Q of the circuit is given by

_ w,L _ 272'(5033 S_l)(10.0X10"3 H)

=R (2009)

~15.8 (12.9.18)

(d) At resonance, the amplitude of the voltage across the inductor is

Vio = 1oX, = l,m,L =(10.0 A)27(5033 5)(10.0x10°° H)=3.16x10°V ~ (12.9.19)

12.9.4 RL High-Pass Filter

An RL high-pass filter (circuit that filters out low-frequency AC currents) can be
represented by the circuit in Figure 12.9.2, where R is the internal resistance of the
inductor.

MV

-0

L

Figure 12.9.2 RL filter

O
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(@) Find V,,/V,,, the ratio of the maximum output voltage V,, to the maximum input
voltage V,,.

(b) Suppose r=15.0Q, R=10Q and L=250 mH . Find the frequency at which
V, IV, =1/2.

Solution:

(@) The impedance for the input circuit is Z, =/(R+r)*+ X where X =wL and
Z,=+R?+ X} for the output circuit. The maximum current is given by

|, = a0 Vo (12.9.20)

-z _\/(R+r)2+Xf

Similarly, the maximum output voltage is related to the output impedance by

V,o = 1,2, = 1,4/R? + X? (12.9.21)

This implies

Vi o AR (12.9.22)
Vio «/(R+r)2+XE
(b) For V,, /V,, =1/2, we have

2 2 2_p2
_RAX 1y o [Ren) 4R (12.9.23)
(R+r)*+ X 4 3

Since X, =wlL =27 fL, the frequency which yields this ratio is

f =551Hz  (12.9.24)

X, 1 \/(10.0 Q+15.0 Q)° —4(10.0 Q)°
~ 271 27(0.250 H) 3

12.9.5 RLC Circuit

Consider the circuit shown in Figure 12.9.3. The sinusoidal voltage source is
V(t)=V,sinwt . If both switches S, and S, are closed initially, find the following

quantities, ignoring the transient effect and assuming thatR, L,V, and e@are known:
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l
RS ol
|

40 Figure 12.9.3

(a) the current 1(t) as a function of time,
(b) the average power delivered to the circuit,

(c) the current as a function of time a long time after only S, is opened.

(d) the capacitance C if both S, and S, are opened for a long time, with the current and
voltage in phase.

(e) the impedance of the circuit when both S, and S, are opened.

(F) the maximum energy stored in the capacitor during oscillations.
(g) the maximum energy stored in the inductor during oscillations.

(h) the phase difference between the current and the voltage if the frequency of V (t) is
doubled.

(i) the frequency at which the inductive reactance X, is equal to half the capacitive
reactance X..

Solutions:

(a) When both switches S; and S; are closed, the current goes through only the generator
and the resistor, so the total impedance of the circuit is R and the current is

I (t) =\%sin wt (12.9.25)
(b) The average power is given by
(VA V,?
(P())=(1, OV (1)) =%<sm2 ot) :ﬁ (12.9.26)
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(c) If only S; is opened, after a long time the current will pass through the generator, the
resistor and the inductor. For this RL circuit, the impedance becomes

1 1

Z= = (12.9.27)
JRZ+ X2 JR*+ 0P
and the phase angle ¢ is
e tanl(%j (12.9.28)
Thus, the current as a function of time is
I(t) =1,sin(ot —¢) :V—Osin(wt—tanlw—l'j (12.9.29)
VR? + 0’ R

Note that in the limit of vanishing resistance R=0, ¢=x/2, and we recover the
expected result for a purely inductive circuit.

(d) If both switches are opened, then this would be a driven RLC circuit, with the phase
angle ¢ given by

ol L
tan § = 2L ;{XC - RwC (12.9.30)

If the current and the voltage are in phase, then ¢ =0, implyingtang=0. Let the
corresponding angular frequency be ,; we then obtain

1

w,L = (12.9.31)
,C
and the capacitance is
c-1t (12.9.32)
w, L

(e) From (d), we see that when both switches are opened, the circuit is at resonance
with X = X.. Thus, the impedance of the circuit becomes

Z = JR2+(X, - X.)? =R (12.9.33)

(F) The electric energy stored in the capacitor is
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uE=%cm§:%cuxcf (12.9.34)

It attains maximum when the current is at its maximum |, :

1 1 (VY 1 Vi
U =—CI’X?==C| =2 =0 12.9.35
C,max 2 0“'C 2 (Rj a)02c2 2R2 ( )

where we have used @’ =1/LC.

(9) The maximum energy stored in the inductor is given by

2
:iLﬁzLW

U
L,max 2 2R2

(12.9.36)

(h) If the frequency of the voltage source is doubled, i.e.,@=2w,=1/+/LC, then the
phase becomes

2/LC )L-(~LC/2C
qﬁztan‘l(Mj:tan‘l ( ) ( ) :tan‘{i\ﬁ} (12.9.37)
R R 2R\C

(i) If the inductive reactance is one-half the capacitive reactance,

1 1( 1
then
1 @,
o= =— 12.9.39
NATERNA ( )

12.9.6 RL Filter

The circuit shown in Figure 12.9.4 represents an RL filter.

L
Vin R § Vum
3 & Figure 12.9.4
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Let the inductance be L = 400 mH, and the input voltage V;,, =(20.0V)sin et , where
@ =200 rad/s .

(a) What is the value of R such that the output voltage lags behind the input voltage
by 30.0°?

(b) Find the ratio of the amplitude of the output and the input voltages. What type of filter
is this circuit, high-pass or low-pass?

(c) If the positions of the resistor and the inductor are switched, would the circuit be a
high-pass or a low-pass filter?

Solutions:

(a) The phase relationship between V, and V; is given by

tang— X, _ob (12.9.40)
V. IX, R

Thus, we have
ol _(200rad/s)(0.400H)

Ctang tan 30.0°

=1390 (12.9.41)

(b) The ratio is given by

Vou Ve o R _ o4 = c0s30.0° = 0.866. (12.9.42)

Vin Vin \[RZ + XE

The circuit is a low-pass filter, since the ratio V

out

IV, decreases with increasing o .

(c) In this case, the circuit diagram is

2 MWy ?
a

R
v in L ) an
: :

Figure 12.9.5 RL high-pass filter

The ratio of the output voltage to the input voltage would be
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-1/2

out

Vv, X, w?? ( R T
Vio Vi \/R2+Xf \/Rz—i-a)zL2 ol

The circuit is a high-pass filter, since the ratioV,, /V, approaches one in the large- @
limit.

12.10 Conceptual Questions

1. Consider a purely capacitive circuit (a capacitor connected to an AC source).

(@) How does the capacitive reactance change if the driving frequency is doubled?
halved?

(b) Are there any times when the capacitor is supplying power to the AC source?

2. If the applied voltage leads the current in a series RLC circuit, is the frequency above
or below resonance?

3. Consider the phasor diagram shown in Figure 12.10.1 for an RLC circuit.

V.’.(}

? . —
o
: VRU

(@) Is the driving frequency above or below the resonant frequency?
(b) Draw the phasor \70 associated with the amplitude of the applied voltage.

(c) Give an estimate of the phase ¢ between the applied AC voltage and the current.

4. How does the power factor in an RLC circuit change with resistance R, inductance L
and capacitance C?

5. Can a battery be used as the primary voltage source in a transformer?
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6. If the power factor in an RLC circuit is cos¢ =1/2, can you tell whether the current
leading or lagging the voltage? Explain.

12.11 Additional Problems

12.11.1 Reactance of a Capacitor and an Inductor

(@ A C=0.5— uF capacitor is connected, as shown in Figure 12.11.1(a), to an AC
generator with V, =300 V. What is the amplitude |, of the resulting alternating current
if the angular frequency wis (i) 100 rad/s, and (ii) 1000 rad/s?

S & = @ Lf;?

V=V,sinwt V=V,sinwt

Figure 12.11.1 (a) A purely capacitive circuit, and (b) a purely inductive circuit.

(b) A 45-mH inductor is connected, as shown in Figure 12.10.1(b), to an AC generator
with V, =300 V. The inductor has a reactance X, =1300 Q. What must be

(i) the applied angular frequency o and

(i) the applied frequency f for this to be true?
(iif) What is the amplitude 1, of the resulting alternating current?

(c) At what frequency f would our 0.5-4F capacitor and our 45-mH inductor have the

same reactance? What would this reactance be? How would this frequency compare to
the natural resonant frequency of free oscillations if the components were connected as
an LC oscillator with zero resistance?

12.11.2 Driven RLC Circuit Near Resonance
The circuit shown in Figure 12.11.2 contains an inductor L, a capacitor C, and a resistor R

in series with an AC generator which provides a source of sinusoidally varying emf
V(t)=V,sinat .
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I_, V() .
Figure 12.11.2

This emf drives current I (t) = I, sin(wt — ¢) through the circuit at angular frequency o .

(a) At what angular frequency @ will the circuit resonate with maximum response, as
measured by the amplitude I, of the current in the circuit? What is the value of the

maximum current amplitude 1., ?

(b) What is the value of the phase angle ¢ between V(t) and I(t) at this resonant
frequency?

(c) Suppose the frequency w is increased from the resonance value until the amplitude I,
of the current decreases from 1. to I ./ J2 . Now what is the phase difference ¢

max

between the emf and the current? Does the current lead or lag the emf?

12.11.3 RC Circuit

A series RC circuit with R=4.0x10°Q and C =0.40 xF is connected to an AC voltage
source V (t) = (100 V)sin wt, with @ =200 rad/s .

(a) What is the rms current in the circuit?
(b) What is the phase between the voltage and the current?
(c) Find the power dissipated in the circuit.

(d) Find the voltage drop both across the resistor and the capacitor.
12.11.4 Black Box

An AC voltage source is connected to a “black box” which contains a circuit, as shown in
Figure 12.11.3.
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)

Figure 12.11.3 A “black box” connected to an AC voltage source.

The elements in the circuit and their arrangement, however, are unknown. Measurements
outside the black box provide the following information:

V (t) = (80 V)sin mt
I(t) = (1.6 A)sin(wt +45°)

(a) Does the current lead or lag the voltage?

(b) Is the circuit in the black box largely capacitive or inductive?
(c) Is the circuit in the black box at resonance?

(d) What is the power factor?

(e) Does the box contain a resistor? A capacitor? An inductor?

(F) Compute the average power delivered to the black box by the AC source.

12.11.5 Parallel RL Circuit

Consider the parallel RL circuit shown in Figure 12.11.4.

@ Tk Bi

Figure 12.11.4 Parallel RL circuit

The AC voltage source is V (t) =V, sin ot .

(a) Find the current across the resistor.

37



(b) Find the current across the inductor.
(c) What is the magnitude of the total current?
(d) Find the impedance of the circuit.

(e) What is the phase angle between the current and the voltage?

12.11.6 LC Circuit

Suppose at t=0 the capacitor in the LC circuit is fully charged to Q,. At a later time

t=T/6 , where T is the period of the LC oscillation, find the ratio of each of the
following quantities to its maximum value:

(a) charge on the capacitor,
(b) energy stored in the capacitor,
(c) current in the inductor, and

(d) energy in the inductor.

12.11.7 Parallel RC Circuit

Consider the parallel RC circuit shown in Figure 12.11.5.

@ TR =

Figure 12.11.5 Parallel RC circuit

The AC voltage source is V (t) =V, sinwt .

(a) Find the current across the resistor.
(b) Find the current across the capacitor.

(c) What is the magnitude of the total current?

38



(d) Find the impedance of the circuit.

(e) What is the phase angle between the current and the voltage?

12.11.8 Power Dissipation

A series RLC circuit with R=10.0 Q, L=400 mH and C=2.0 u«F is connected to an
AC voltage source which has a maximum amplitude V, =100 V .

(a) What is the resonant frequency @, ?

(b) Find the rms current at resonance.

() Let the driving frequency be @ =4000 rad/s. Compute X., X, , Zand ¢.

12.11.9 FM Antenna

An FM antenna circuit (shown in Figure 12.11.6) has an inductance L=10° H, a
capacitance C=10"F and a resistance R=100Q . A radio signal induces a

sinusoidally alternating emf in the antenna with an amplitude of 107° V..

| Antenna

R
L C
B ——

ground

Figure 12.11.6

(a) For what angular frequency a, (radians/sec) of the incoming waves will the circuit
be “in tune”-- that is, for what @, will the current in the circuit be a maximum.

(b) What is the quality factor Q of the resonance?

(c) Assuming that the incoming wave is “in tune,” what will be the amplitude of the
current in the circuit at this “in tune” frequency.

(d) What is the amplitude of the potential difference across the capacitor at this “in
tune” frequency?
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12.11.10 Driven RLC Circuit

Suppose you want a series RLC circuit to tune to your favorite FM radio station that
broadcasts at a frequency of 89.7 MHz . You would like to avoid the obnoxious station

that broadcasts at 89.5MHz. In order to achieve this, for a given input voltage signal
from your antenna, you want the width of your resonance to be narrow enough at
89.7MHz such that the current flowing in your circuit will be 107 times less at
89.5MHzthan at 89.7MHz . You cannot avoid having a resistance of R =0.1Q, and
practical considerations also dictate that you use the minimum L possible.

(@) In terms of your circuit parameters, L, R and C, what is the amplitude of your
current in your circuit as a function of the angular frequency of the input signal?

(b) What is the angular frequency of the input signal at the desired resonance?
(c) What values of L and C must you use?
(d) What is the quality factor for this resonance?

(e) Show that at resonance, the ratio of the amplitude of the voltage across the inductor
with the driving signal amplitude is the quality of the resonance.

(F) Show that at resonance the ratio of the amplitude of the voltage across the capacitor
with the driving signal amplitude is the quality of the resonance.

(9) What is the time averaged power at resonance that the signal delivers to the circuit?

(h) What is the phase shift for the input signal at 89.5MHz ?
(i) What is the time averaged power for the input signal at 89.5MHz?

(j) Is the circuit capacitive or inductive at 89.5MHz ?
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