Physics — 8.02 Massachusetts Institute of Technology April 1, 2002

Almost all authors of college physics books are confused about the proper use of Faraday’s Law in circuits
with inductors. Giancoli is no exception. Professor John Belcher (who has lectured 8.02 many times) has
a wonderful Lecture Supplement which sets the record straight. It follows below. I (Walter Lewin) have
amended it slightly by adding references to Giancoli (Belcher used a different book which made the same
embarrassing mistakes) and by referencing my 8.02 lecture of March 15, 2002. It may help to first read the
lecture supplement on non-conservative fields of March 15.

Self-Inductance — Kirchhoff’s 2nd Law — Faraday’s Law
The addition of time-changing magnetic fields to simple circuits means that the closed line integral of the
electric field around a circuit is no longer zero. Instead, we have, for any open surface
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Any circuit where the current changes with time will have time-changing magnetic fields, and therefore
induced electric fields. How do we solve simple circuits taking such effects into account? We discuss here
a consistent way to understand the consequences of introducing time-changing magnetic fields into circuit
theory — that is, inductance.

As soon as we introduce time-changing magnetic fields, the electric potential difference between two
points in our circuit is no longer well-defined, because when the line integral of the electric field around a
closed loop is no longer zero, the potential difference between points a and b, say, is no longer independent
of the path used to get from point a to point b. That is, the electric field is no longer a conservative field,
and the electric potential is no longer an appropriate concept (ﬁ can no longer be written as the negative
gradient of a scalar potential). However, we can still write down in a straight-forward fashion the equation
that determines the behavior of a circuit.

To show how to do this, consider
the circuit shown in the sketch to the
right. We have a battery, a resistor, a
switch S that is closed at t = 0, and
a “one-loop inductor.” It will become
clear what the consequences of this “in-
ductance” are as we proceed. Fort > 0,
current will flow in the direction shown
(from the positive terminal of the bat-
tery to the negative, as usual). What is Switch S —>
the equation that governs the behavior closed at 0 !
of our current i for t > 07

To investigate this, apply Faraday’s

Law to the open surface bounded by our circuit, where we take dA out of the page, and ds right-handed
with respect to that choice (counter-clockwise). First, what is the integral of the electric field around this
circuit? Well, there is an electric field in the battery, directed from the positive terminal to the negative
terminal, and when we go through the battery in the direction of ds that we have chosen, we are moving
against that electric field, so that E . dsis negative. Thus the contribution of the battery to our integral is
— . Then, there is an electric field in the resistor, in the direction of the current, so when we move through
the resistor in that direction, E-dsis positive, and that contribution to our integral is +¢R. What about
when we move through our “one-loop inductor”? There is no electric field in this loop if the resistance of
the wire making up the loop is zero (this may bother you — if so, see the next section). If the wire has a
small resistance r < R, then there will be an electric field in the wire, and a contribution to the integral of
the electric field of + ir, which we just lump with the ¢R term we already have (that is, we redefine R to
include both resistances). So, going totally around the closed loop, we have
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Now, what is the magnetic flux ¢ through our open surface? First of all, we arrange the geometry so
that the part of the circuit which includes the battery, the switch, and the resistor makes only a small
contribution to ¢ as compared to the (much larger in area) part of the open surface which includes our
“one-loop” inductor. Second, we know that ¢ is positive in that part of the surface, because current flowing
C(_)‘unter—glocliwise will produce a B field out of the paper, which is the same direction we have assumed for
dA, so B - dA is positive. Note that B is the self magnetic field — that is the magnetic field produced by
the current flowing in the circuit, and not by any external currents.

We also know that at any point in space, B is proportional to the current %, since it is computed from
the Biot-Savart Law, to wit,
o ds x T
dr 3

If we look at this expression, although for a general point in space it involves a very complicated integral
over the circuit, it is clear that B is everywhere proportional to . That is, if we double the current, B at
every point in space will also double, all other things being the same. It then follows that the magnetic flux
¢ itself must also be proportional to 4, since it is the surface integral of ]§, and B is everywhere proportional
to i.

B=i

That is, we must have ¢ = Li, where L is a constant for a given arrangement of the wires of the circuit.
If we change the geometry of the circuit (i.e., suppose we halve the radius of the circle in our sketch), we
will change L, but for a given geometry, L does not change. The quantity L is called the self-inductance of
the circuit, or simply the inductance. From its definition, we can show that the inductance has dimensions
of o times length. We give an estimate of L for a single loop of wire below.

But first, let us write down the equation that governs the time evolution of i. If ¢ = Li, then the time
rate of change of ¢ is just L di/d¢, so that we have from Faraday’s Law
Lo i do di
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If we divide equation (1) by L, and rearrange terms, we find that the equation that determines the behavior of

iis di/dt+(R/L)i = ¢/ L. The solution to this equation given our initial conditions is i(t) = (¢/R)(1—e~F/F)

[see Giancoli, equation 30-9, p. 762]. This solution for (¢) reduces to what we expect as t gets very large,

g/R, but also shows a continuous rise of the current from zero at ¢t = 0 to this final value, in a characteristic

time 7, = L/R (71, is called the inductive time constant). This is the effect of having a non-zero inductance

in a circuit, i.e., of taking into account the induced electric fields due to time changing B fields. And this is

what we expect from Lenz’s Law — the reaction of the system is to try to keep things the same, that is to

delay the build-up of current (or its decay, if we already have a current flowing in the circuit).

Kirchhoff’s Second “Law” Modified for Inductors
We can write the governing equation for i(¢) from above (equation (1)) as
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where we have now cast it in a form that “looks like” a version of Kirchhoff’s Second Law, namely that the
sum of the potential drops around a circuit is zero (we are still moving counter-clockwise around the circuit,
but the overall sign changes from equation (1) to (2) because we are now adding up changes in electric
“potential”).

Our text (Giancoli) chooses to approach circuits with inductance by preserving “Kirchhoff’s Second Law,”
or the loop theorem, by specifying the “potential drop” across an inductor. To get the correct equation,
Giancoli must make an additional “rule” for inductors as follows:



Inductors: If an inductor is traversed in the direction moving with the current, the change
in potential is —L di/dt; if it is traversed in the direction opposite the current, the change in
potential is +L di/dt.

Although Giancoli never explicitly states this rule, it is implicit in his use of the “Loop Theorem” in sections
30-4, 30-5, and 30-6.

Use of this formalism will give the correct equations. However, the continued use of Kirchhoff’s Second
Law with this additional rule is MISLEADING at best, and at some level DEAD WRONG in terms
of the physics, for the following reasons. Kirchhoff’s Second Law was originally based on the fact that the
integral of E around a closed loop was zero. With time-changing magnetic fields, this is no longer so, and
thus the sum of the “potential drops” around the circuit, if we take that to mean the negative of the closed
loop integral of ﬁ, is no longer zero — in fact it is +L di/dt. As do many introductory texts, Giancoli
brings the L di/dt term to the other side of the equation, adds it to the negative of the closed loop of E, and
ascribes it to a “potential drop” across the inductor.

This approach gives the right equations, but it sure confuses the physics. In particular, having a “potential
drop” across the inductor of —L di/dt implies that there is an electric field in the inductor such that the
integral of E through the inductor is equal in magnitude to Ldi/dt. This is not always, or even usually,

true, as in our example above (the integral of B through our “one-loop” inductor above is zero, NOT
L di/dt).

The fact that E is zero in our “one-loop inductor” above may confuse you, and for good reason. You have
developed some intuition about induced electric fields, based on the kinds of Faraday’s Law problems we
have been doing up to now. The fact is, quite often in the past when we have had time-changing magnetic
fields, we have had an electric field right where dB /dt was non-zero. That fact would make you think that
Giancoli is right, that there is an electric field right there in the inductor, and thus a potential drop across
it. What has changed in our circuit above to make E zero in our “one-loop inductor,” even though there is
a time-changing magnetic field through it? This is a very subtle point, and the source of endless confusion,
80 let’s look at it carefully.

Our intuition that
there should be an
electric field in an in-
ductor is based on do-
ing problems like that
shown in the sketch
to the right. We have
a loop of wire of ra-
dius a and total resis-
tance R, immersed in
an external magnetic 4
field which is out of t (sec)
the page and increasing with time as shown. In considering this circuit, unlike our “one-loop” inductor
above, we neglect the magnetic field due to the currents in the wire itself, assuming that By is much greater
than that field, and consider only the effects of the external field. The conclusions we arrive at here can be
applied as well to the self-inductance case.

Besla)

The changing external magnetic field will give rise to an induced electric field in the loop of wire, with
a line integral which is equal to —wa?(dBeyx/dt). This induced electric field is azimuthal and uniformly
distributed around the loop (see sketch). We have from Faraday’s Law that

—
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Thus if the resistance is distributed uniformly around our wire loop, we get a uniform Einduced in the
loop which is the same at every point in the wire loop, and circulating clockwise for ]§ext increasing in
time. This electric field causes a current, with the cur-
rent density given by f: ﬁinduced /7 (the microscopic form

of Ohm’s Law). The total current in the wire loop will
be the total “potential drop” around the loop divided by
the resistance R (the macroscopic form of Ohm’s Law),
or 27ra]§induced/R. This current will circulate clockwise in

—

the same sense as Einquceq- Thus if the resistance is dis-
tributed uniformly around our wire loop, we get a uniform

—

Einduceq in the loop which is the same at every point in the

wire loop, and circulating clockwise for increasing Beyy.

But what happens to the electric field if we don’t dis-
tribute the resistance uniformly around the loop. For ex-
ample, let’s make the left half of our loop out of wire with
resistance Ry, and the right half the loop out of wire with
resistance Ry, with R = R; + R», so that we have the same total resistance as before (see sketch next page).
Let’s furthermore assume that R; < Rs. NOTICE some similarity with the demo I (Walter Lewin) did in
lecture on March 15, 2002 (read my Lecture Supplement). How is the electric field distributed around the
loop of wire now? First of all, the emf in the circuit is the same as above, as is the total resistance, so that
the current ¢ has to be the same as above. Moreover it must be the same on both sides of the loop, by
' charge conservation. But the electric field in the left half
of the wire loop (B;) must now be different from that in

the right half (E,).

s
Einduced

This is so because the line integral of the electric field
on the left side, over the left side, is maE,, and this must
be (from Ohm’s Law) equal to i R;. Similarly, maEe = iRs.
Thus E1/E; = R;/R,, and therefore E; < Eg, since R; <
Ry. And this makes sense. We must get the same current
on both sides, even though the resistances are different. We

\ do this by adjusting the electric field on the side with the
B \ N\ smaller resistance to be smaller. Because the resistance
mduced is also smaller, we produce the same current as on the

: \ opposing side with this smaller electric field.

But what happened to our uniform electric field? Well, there are two ways to produce electric fields —
one from time-changing magnetic fields, the other from electric charges. Nature accomplishes the reduction
in E; compared to Es by charging up the junctions separating the wire segments (see sketch above), positive
on top and negative on bottom. The total electric field is the sum of the electric field induced by the

—

changing external magnetic field (Einduced, as indicated in the sketch above, still clockwise), and the electric
field associated with the charging at the junctions (ﬁcharge, as indicated in the sketch, going from positive
charge to negative charge, as is always true for fields produced by charges). It is clear that the addition of
these two contributions to the electric field will reduce the total electric field on the left and enhance it on
the right. The field By will always be clockwise (as it must be to produce clockwise current flow), but it
can be made arbitrarily small by making R; <« R,. However, we still always have the integral of E over the

complete closed loop equal to —ra? (dﬁext /dt), as Faraday’s Law demands.

Thus we see that we can make a non-uniform electric field in an inductor by using non-uniform resistances,
even though our intuition tells us (correctly) that the induced electric field should be uniform at a given radius.
The reality is that there is another way to produce electric fields, namely from charges, and Nature uses that
fact as needed. All that Faraday’s Law tells us is that the line integral of E around a closed loop is equal
to the negative time rate of change of the magnetic flux through the enclosed surface. It doesn’t tell us at



what locations the E field is non-zero around the loop, and it may be non-zero (or zero!) in unexpected
places. The field in wire making up the “one-loop inductor” above was zero (or at least very small), with
the significant fields occurring only in the resistor and the battery, for exactly the sort of reason we have
considered here.

One final point. Suppose you put the probes of a voltmeter across the terminals of an inductor (with very
small resistance) in a circuit. What will you measure? What you will measure on the meter of the voltmeter
is a “voltage drop” of L di/d¢. But that is not because there is an electric field in the inductor! It is because
putting the voltmeter in the circuit will result in a time changing magnetic flux through the voltmeter
circuit, consisting of the inductor, the voltmeter leads, and the large internal resistor in the voltmeter (see
my Lecture Supplement of March 15, 2002). A current will flow in the voltmeter circuit because there will
be an electric field in the large internal resistance of the voltmeter, with a potential drop across that resistor
of L di/dt, by Faraday’s Law applied to the voltmeter circuit, and that is what the voltmeter will read. The
voltmeter as usual gives you a measure of the potential drop across its own internal resistance, but this is not
a measure of the potential drop across the inductor. It is a measure of the time rate of change of magnetic
flux in the voltmeter circuit! As before, there is only a very small electric field in the inductor if it has a
very small resistance compared to other resistances in the circuit.

If you find all this confusing, you are in good company. This is one of the most difficult
and subtle topics in this course — it trips up experts all the time. Not easy!



