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MIT 8.02 Spring 2002
Assignment #9 Solutions

Problem 9.1
Wavelength of radio waves. (Giancoli 32-37.)

Channel 2: 3.00 x 10°
C . X
M=o =2 556m .
2= F, T 540 x 106 o
Channel 69: 300 x 10°
Ao = — = 22X g 3790

feo 806 x 106

Problem 9.2

Traveling electromagnetic waves.

The given electric field is in all three cases of the form
E(z,t) = Egsin(kz £ wt + «)

with Ey perpendicular to the direction of propagation (the z-direction) and o = 0 or 7/2
(recall that sin(6 + 7/2) = cosf). For such a wave, the propagation direction is +& if the
argument is (kz — wt + «) and —& if the argument is (kz + wt + «). k is the wavenumber,
A = 2n/k is the wavelength, f = w/27 is the frequency in Hertz, v = w/k is the speed, and
n = c¢/v is the index of refraction. From the given expressions and these definitions, we can
read off the answers to (a)—(e):

| | prop. dAirect. [ A(m) [k(m™)| fMHz) | v(m/s) | n ]

case (1) —i 4.00 1.57 | 7.50 x 107 | 3.00 x 108 | 1.0
case (2) +i 2.00 3.14 | 1.50 x 108 | 3.00 x 10 | 1.0
case (3) .y 1.00 6.28 |213x10% 213 x 10% | 1.4

(f) In order to construct the corresponding equations for B, we must remember two features
of a traveling EM plane wave: (i) B is in phase with E, and (ii) B is perpendicular to both
E and the propagation direction such that E x B points in the direction of propagation.
If the vector k indicates the direction of propagation, then our three cases must have the
following orientations:
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As for magnitudes: B = E/v = nE/c. The full expressions for the magnetic fields of our
three cases are thus (with B in Tesla)

case (1): B, = (—833x 107%)sin(1.572 +4.71 x 10°%), B, =B, =0
case (2): B, = (1.67x 107")cos(3.14x —9.42 x 10%) , B, =B, =0
case (3): B, = (1.87x1077)cos(6.28z +1.34 x 10°), B, =B, =0

(g) The instantaneous Poynting vector for case (3) is (Giancoli Equation (32-18), p. 801):
1 1
S = —(ExB)=-—E,B,i
Ho Ho

40)(1.87 x 1077
(40)( x 1077) cos?(6.28z + 1.34 x 10%t)z
(4 x 10-7)
T -

= (—6.0)cos*(6.28z + 1.34 x 10°)% .

The time average of cos?(A+ Bt) is % for any A and B, so the time-averaged Poynting vector
for all positions (including the two specified) is

S =(—3.0)Z (units: Joules per square meter per second).

Thus we find that this traveling electromagnetic wave transmits energy in the —% direction
through space.

Problem 9.3
EM waves — Maxwell’s equations and the “speed of light”.

We want to apply Faraday’s law to the given plane surface
(area A;) and the rectangular loop that bounds it. For def- _ ——— M4 ——
initeness, we'll take the normal to the surface to be in the i

+7 direction. To calculate ®p, we divide the surface up into !
many strips of thickness dz as shown in the diagram. Each | i

strip will make a differential contribution to the flux of

d®p = B,dA = Bycos(kz —wt)ldz . 1®
y
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The total flux will then be given by
A4 Byl . :
Op = /d@B = Bol/ cos(kz — wt) dz = T[sm(k)\/él — wt) —sin(—wt)] .
0

Since kA/4 = k(2r/k)/4 = 7/2, this becomes

P B
&p = BTOZ[cos(wt) +sin(wt)] = - % = (])glw

[sin(wt) — cos(wt)] .

Now to calculate § E-dl. Our choice of +¢ (as opposed to —g) for the normal to our surface
dictates that our line integral be taken counterclockwise when viewed as in the diagram.
Since E is purely in the Z direction, E - dl = 0 along the top and bottom edges of the
integration curve. This leaves us with

I 0
fEd = [Be=Matd+ [ B=01)ds
0 I
I 0
= Eosm(wt)/o dx—i—Eocos(wt)/l dx
= Epl[sin(wt) — cos(wt)] .

Faraday’s law asserts that § E - dl = —d®p/dt. For the case under consideration, this gives

Eyl[sin(wt) — cos(wt)] = 20

[sin(wt) — cos(wt)] .

This will be satisfied for all time only if Fy = Byw/k. Given that ¢ = w/k is the wave
speed, we have the result By = Ey/c as a consequence of Faraday’s law. Combining this
with By = €yiocEy as obtained in lecture from Ampere’s law, we conclude that ¢ = 1/,/€pig
is the speed of light in vacuum.

Problem 9.4

A standing electromagnetic wave.
(a) Any standing wave of the form cos(kz) cos(wt) has a wavelength of 27 /k and a frequency
in Hertz of w/2m. For our wave, k = 2¢/3cm™! and w = 7.0 x 10°rad/s, so
A=18l4cm, f=1114x10""Hz .
(b) The index of refraction of the medium is

c c (3.00 x 10'%cm/5) L 48
n—=—= = = 1.
v w/k  (7.0x100s-1)/(2y/3cm-1)
(c) To find B, we picture our E-field as the linear superposition of two traveling waves, one
traveling in the +2 direction and one in the —Z direction. Using the trigonometric identity

2cosacos 8 = cos(a+ B) + cos(a — B)



MIT 8.02 Spring 2002 — Assignment #9 Solutions 4

we can rewrite our E-field as
1
E= §E092[c0s(2\/§z — 7.0 x 10"¢) + cos(2v/3z + 7.0 x 10'%)] .

Now, using the rule discussed in problem 9.2(f), the B-field associated with the traveling
wave propagating in the +2 direction must point in the +7 direction (assuming Ej is positive)
so that E x B points in the +Z direction. Similarly, for the wave propagating in the —2
direction, B must point in the —¢ direction. Thus our total B-field must be

1
B = 5Bog)[cos(2\/§z — 7.0 x 10'%) — cos(2V/3z + 7.0 x 10'%)] .

Using the identity
2sin asin 8 = cos(a — 8) — cos(a + B8)

we can write this as
B = Byjsin(2v/32) sin(7.0 x 101%) .

We see that in a standing wave, B is 90° out of phase relative to E both in space and in
time. The value of By is related to Fy by

k E E

BO == _EO == —0 == u .

w v c
(d) The instantaneous Poynting vector S = (E x B)/p for this wave at any point in space
will have a time dependence of the form S oc sin(wt) cos(wt). The average of sin(wt) cos(wt)
over one full period in time is zero, so S = 0 at all points. This result tells us that standing
elecromagnetic waves do not transmit energy through space. Compare this with the result
of 9.2(g), where we found that a traveling electromagnetic wave does transmit energy.

Problem 9.5

Polarization of electromagnetic radiation.

(a) If we let z = 0, our electric fields vary with time as

(1): E, = —Epsin(wt) E, = —4Ejsin(wt)
(2): E, = —Eycos(wt) E,= Ejsin(wt)
(3): E, =2Epsin(wt) E,=2E,sin(wt)

We can now plot a trace of E as a function of time at z = 0 and see the polarization easily
(note: plots axes not to scale from one to the next):
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L, L, L,

(1): linear (2): circular (3): linear

(b) The amplitude of B is given by the electric field amplitude divided by ¢, since we are in a
vacuum. We obtain the direction by requiring that E x B be in the direction of propagation.
(It is helpful to note that, for E and B purely in the y-z direction, ExB = Z(E,B,—E,B,).)
Using these prescriptions, we find

(1): B, = (—4Ey/c)sin(kx —wt) B, = (Ey/c)sin(kr — wt)
(2): By = (Ep/c)sin(kz + wt) B, = (Ey/c) cos(kx + wt)
(3): By = (2Ey/c)sin(kx —wt) B, = (2Ey/c) cos(kz — wt + 7/2)

(B, =0 for all cases.)

Problem 9.6

Radiation pressure due to the sun. (Giancoli 32-29.)

Let P = 3.8 x 10 W be the Sun’s total power output. Assuming negligible absorption in
the intervening space, the amount of energy per unit time crossing a spherical surface of
radius r centered on the Sun will also be P. The time-averaged Poynting flux (energy per
unit area per unit time) at a distance r from the center of the Sun will therefore be

— P
S(r) = 472

Assuming full absorption, the dust particles will feel a radiation pressure of pr,q = S/c (see
Giancoli section 32-8, pp. 802-803). If the particles have a radius a, they will feel an outward
(i.e. away from the Sun) force given by

— a’P
Frag = T0°Prag = TS /c = e
The particles also feel a gravitational force directed towards the Sun. If p is the mass density
of the dust and M is the Sun’s mass, the magnitude of this force is
G(3ma®p)M
2

FG:
r
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The magnitude of the radiation pressure force grows as a®, while the magnitude of the
gravitational force grows as a®. So for very small particles, the outward radiation force
should dominate, while for larger particles, the inward gravitational force will dominate.

The scale is set by the particle size a¢ for which the two forces exactly balance one another:

2P G(3madp)M 3p
@GP _Glnd)M _ |
4r2c r? 16mGpMc

Plugging in the (many!) numbers, we get

3(3.8 x 10%)

= =285x10""m .
167(6.67 x 10-11)(2.0 x 103)(1.99 x 10%0)(3.00 x 108) o

Qo

Dust particles with a radius smaller than this would have been ejected by radiation pressure.

Problem 9.7

Snell’s law in action = dispersion! (Giancoli 33-46.)

From Giancoli Figure 33-26 (p. 825), we can obtain approximate values for the index of
refraction of silicate flint glass for the two wavelengths of interest:

A =450nm: n; >~ 1.64
Ay =650nm: ny~1.62.

Now, consider either of the two rays. Define the
angles «, 3, v, and 0 as shown in the diagram at
right. Let n be either n; or ny and 6 be either 6; or
f5. We'll take the refractive index of the surround-
ing medium to be 1. Snell’s law (Giancoli Equation
(33-5), p. 823) tells us that

sin(45°) =1/V2=nsina  and nsind =sinf .
Also, « =90° — S and 6 = 90° — v, so sina = cos 8 and sind = cosy. Thus
1/vV2=ncos and ncosy=sinf .
Finally, we have 8 4 v + 60° = 180° = v = 120° — 3. Solving for # now gives

6 = arcsin(ncosvy) = arcsin[n cos(120° — §)]

1
= arcsin<ncos [120° — arccos | ———

For our two refractive indices of interest, this gives

6, = 68.1°, 6, =653 .
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Problem 9.8
Snell’s law in action = fiber optics! (Giancoli 33-53.)

(almost
90 degrees)

The greatest test of our optic fiber’s ability to guarantee total internal reflection will occur
when the beam entrance angle o — 90°. So, let’s consider that case in particular. Snell’s
law gives

sina =sin90° =1=mnsinf =ncosvy .

Now suppose that total internal reflection does not necessarily occur at point “a”. The angle
6 that the emerging beam makes with the normal to the fiber’s surface will be given by

Snell’s law:
sinf =nsiny = ny/1 —cos?y .

Using ncosy =1 from above, this becomes

sinf =ny/1—1/n?=vn2-1 .

So sin @ increases as n gets bigger. sinf = 1 (corresponding to 6 = 90°) is the critical value
for the onset of total internal reflection at point “a”. The condition on n for total internal
reflection of all beams entering the fiber is therefore

V2 —1>1 = n>V2~142 |

where we have rounded up just to be safe.

END



