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MIT 8.02 Spring 2002
Assignment #8 Solutions

Problem 8.1
An LRC circuit.

L = 15mH
R = 80Q
C = b5uF
V(t) = Vysin(wt)

(a) As discussed in lecture (and in Giancoli Section 31-6, p. 780), in an LRC circuit, the
driving frequency at which the current reaches a maximum (resonance) is

1 1
Ve~ /(0.015)(5 x 10-5)

(b) From Giancoli Section 31-5 (pp. 776-779), we have
_ Vo
VB + (WL —1/wC)?

= 3651.5rad/s .

I(t) = Iy sin(wt — ¢) sin(wt — ¢) .

(Note: Giancoli adopts the convention t = 0 when the current in the circuit I(t) = 0.
In this problem, our convention is to take t = 0 when the source voltage V(t) = 0.
So, to apply Giancoli’s results to our situation, we shift the origin in time according to

WlGiancoli = Wlys — ¢)

Thus we have

w | wad/s) | L () | wL (Q) | /B2 + (wL — 1/wC)2 (Q) | Iy (A)
0.25 wy 913 219 13.7 220 0.18
Wo 3651 54.8 54.8 80 0.50
4 wy 14606 13.7 219 220 0.18

(c) For w = wp, wL = 1/wC, and thus the phase angle ¢ between the peak current and peak
source voltage is zero (see Giancoli Equation (31-10a), p. 778). This gives

I(t) = %Sinwot .
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Since I = d@)/dt, we have for the charge on the capacitor

v
Qt) = —ﬁ cos wot .

(The “integration constant” must be zero: our solution for the circuit behavior has assumed
that the voltage across the capacitor, and hence the charge on the capacitor, is purely
sinusoidal in time.) So,

1Q2 _ ‘/02 V'OQL

_ Y _ Ve 2 _ 2
Uc(t) = 2C ~ %R0 cos” (wot) 52 €08 (wot)
= (0.0019) cos®(woet) (Joules),
1 VEL
I(t) = 5[112 = 20R2 SiIIQ(th>

= (0.0019) sin*(wot) (Joules).

Problem 8.2
Average power dissipated in an LRC' circuit. (Giancoli 31-20)

(In the opinion of the solution author, the instantaneous power P = IV of this problem
should be called the “power delivered by the power supply”, not the “power dissipated in
the circuit”.)

From I = Ipsin(wt) and V = Vysin(wt + ¢), we have
P =1V = L)V, sin(wt) sin(wt + @) .
Next we make use of the trigonometric identity
sin(a + 8) = sinacos 8+ cosasin §
giving

P = L)V,[sin®(wt) cos ¢ + sin(wt) cos(wt) sin @] .

The average of sin?(wt) over one period is 1, while the average of sin(wt) cos(wt) is zero, so

2
we have )
P= §I0V0 cos o ,

as advertised.
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Problem 8.3
Width of resonance peak. (Giancoli 31-30)

(Note: to be consistent with previous notation, the problem statement should really ask for
the difference between the two frequencies where Iy = %IO,max-)

The results of problem 8.1(b) suggest that driving frequencies w = awy and w = o~ 'wy will
give the same peak current I. We can see this plainly if we use wy = 1/v/LC to recast the
expression for Iy:

_ Vo _ Vo
\/R2+(wL— 1/wC)? R\/l-l—%(w/wo—wo/(,u)2

Iy

(1)

Now, let wy and w_ be the two driving frequencies on either side of the resonance peak
that give Iy = 3Iomax = 5Vo/R. In view of (??), they will evidently be related to wo by
wy = awy and w_ = o 'wy for some «. If the resonance peak is sharp, [y(w) falls of very
quickly on either side of wy, so w; and w_ must be relatively close to wy. Thus we can take
a = 1+446, with § < 1. This gives wy = (1 + 6)wp, w— = (1 +6)'wy = (1 — §)wy, and
Aw = wy — w_ = 20wp. For w = either wy or w_,

(ﬁ _ ﬂ>2 ~ ((1 +6) - (11@)2 ~ a0 =t~ B roawy . @

Wo Wi wp

We can now find Aw by plugging (??) into (?7?):
1 Vo Y

Iy = slpmax = ~ .
Ry/1+ %(Aw)Q 2R

2

This solves easily to give

as we were to show.
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Problem 8.4

Traveling waves on a string.

(a) For any traveling wave of the form
y = asin(kx — wt) ,

a is the amplitude, k is the wavenumber, A = 27 /k is the wavelength, w is the frequency
in radians per second (f = w/2w is the frequency in Hertz), T = 27 /w is the period, and
v = w/k is the speed of the wave. For our wave,

y = 0.4sin[7(0.52 — 200t)] (x, y in cm, ¢ in sec)

and we have

a = 04cm

k = 057 =157cm™
A = 2r/k=4cm

w = 2007 = 628rad/s
(f = w/2m=100Hz)
T = 2n/w=0.01sec

v = w/k=400cm/s .
(b) At ¢ =0, the equation of the wave is
y(x,t)|t=o = 0.5sin(1.57x) .
At t =1/400sec (= T'/4), the equation is
y(2,t)|¢=1/400 = 0.58in(1.57x — 7/2) = —0.5cos(1.57x) .
Following is a plot of y vs. = for these two times:
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(c) The transverse (y-direction) speed of a point on our string is

YW aw cos(kz — wt)

dt

with maximum value

d
d_?; . =aw=25lcm/s .

(d) If we clamp the string at two points a distance L cm apart and observe a standing wave
of the same wavelength as above, then L must be an integer number of half-wavelengths:

L=n\2 (n=1,2,3,4,.) .

For our value of A = 4cm, the first three possibilities are:

n=1 RN L= 2cm
L= 4cm

L= 6cm

If L is to be strictly less than 10 cm, there are 4 possible values for L: 2cm, 4cm, 6 cm, and
8 cm.

Problem 8.5
Standing waves on a string.
(a) A standing wave of the form
y = asin(kx) cos(wt)
has the same wavelength, etc. as given in 8.3(a) above. Thus, for
y = 0.3sin(3x) cos(1200¢)
with z, y in centimeters and ¢ in seconds, we have

k= 3em™

A= 2r/k=21cm

w = 1200rad/s

(f = w/2r=191Hz)

T = 2n/w=1524x10"%s .
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(b) The times of interest are t =0, ¢ =1.31 x 1073s =T/4, and t = 2.62 X 107%s = T'/2:

y(x,t)|t=0 = 0.3sin(3z)
y(fl:,t>|t:1.31><10—3 = 0.3 Sln(3x) COS(7T/2> =0
y(x,t)|i=0.62x10-3 = 0.3sin(3z) cos(n) = —0.3sin(3z) .

Following is a plot of y vs. z for these three times:
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Compare the evolution of this standing wave with the evolution of the traveling wave of
problem 8.3.

(c) As in 8.3(c), the maximum transverse speed is

dy

o =aw = 360cm/s .

max

(d) One could interpret this question in one of two ways. If by “speed of propagation” we
mean the so-called phase speed, then it is

v=w/k=400cm/s .

If on the other hand we mean the speed with which this particular waveform (standing wave)
travels along the string, then it is zero. (See plot under (b) above.)
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Problem 8.6

Distance sensing with sound.

oA L

bat

(a) The time T between the emission and return of the bat’s pulse to a wall L meters
away is T' = 2L/v,, where v, is the speed of sound in air. Thus a distance uncertainty AL
corresponds to a time uncertainty AT = 2AL/v,. For AL = £0.2m and v, = 344m/s
(1atm at 20°C), we have

AT = +1.2 x 10 3sec .

(b) Suppose the bat in our methane-filled cave sends out a pulse which covers a distance
Lactuar. The bat will receive the reflected pulse after a time T' = 2L,ctyal /Um, Where vy, is the
speed of sound in methane. If the bat perceives that he is in air, he will interpret this time
delay as being due to an apparent distance

v v,

Lapparent = = _Lactual .
2 Um

For v, = 344m/s and vy, = 432m/s, this gives
Lapparent = 0-8Lactual .

So the bat will perceive things as being closer than they actually are by a factor of 0.8,
because the signals return faster than he expects.
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Problem 8.7
Design a flute.

(a) When the system oscillates in the fundamental mode, the length of the tube (open open)
is half the wavelength, so the length of the flute should be L = A/2. Wavelength is related
to frequency f (in Hertz) and sound speed v, by fA = v,, or A = v,/ f, so that L = v,/2f.
For f = 261.7Hz and v, = 344m/s,

L = 0.657 meters .

(b) For a modern equal-tempered scale, the frequency of any given note is ¥/2 ~ 1.0595
times the frequency of the note one half-step below (note frequencies may also be found
tabulated). This allows us to calculate the necessary effective tube lengths for each note
from L = v,/2f, and hence the corresponding key spacings AL:

| Note | f(Hz) | L (m) [ AL (m) |
C | 2617 | 0657 | (0)
C$/Db | 277.3 | 0.620 | 0.037
D 293.7 | 0.586 | 0.034
Di/Eb | 311.2 | 0.553 | 0.033
E 329.7 | 0.522 | 0.031
F 349.3 | 0.492 | 0.030
F$/Gb | 370.1 | 0.465 | 0.027
G 392.1 | 0.439 | 0.026
G4/Ab | 4154 | 0.414 0.025
A 440.1 | 0.391 0.023
Af/Bb | 466.3 | 0.369 | 0.022
B 494.0 | 0.348 0.021
C 523.4 | 0.329 | 0.019

(Note: the somewhat jumpy progression of AL’s is due to round-off error.)

END



