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MIT 8.02 Spring 2002
Assignment #7 Solutions

Problem 7.1
Ideal transformer. (Giancoli 29-42)

Let Vi be the reading of a voltmeter attached across the primary (input) coil of the trans-
former and V;, be the reading of a voltmeter attached across the secondary (output) coil.
Also, let Ny, ®p,; and N, ®po be the number of turns and the magnetic flux per turn in
the primary and secondary, respectively. Applying Faraday’s law to a loop through the coil
and voltmeter (for each coil) gives

d®p,
Vi = N2
1 1 dt
d®p,
Vo = Ny—2
2 2 dt

In an ideal transformer, ®p; = ®p 2, and we have

Vi N

VN, (1)

Another feature of an ideal transformer is that all the power delivered by an A.C. generator
attached to the the primary is received by a load attached the secondary (no energy losses):

Vil = V2l . (2)
Note that (1) and (2) together give

N1I1 == N2I2 .

In this problem, we are given
Vil =Vol, = P =100W

and also
This gives
Vi=P/I, =100/26 ~3.85W .
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(a) Since V, > V), this is a step-up transformer.
(b) The voltage (again, defined as “the value read by a voltmeter attached across the coil”)
from primary to secondary is multiplied by a factor of

Va/Vi = VoI /P = (12)(26)/100 = 3.12 .

Problem 7.2

A transformer for impedance matching.

(a) In this part, we have a simple circuit as shown at right,
with r = 040, R = 15Q, £(t) = &cos(wt), & = 150V, r

and w/(27) = 50 Hz. From Ohm’s law, the current I(¢) in the R §
circuit is

I(t) = Tgfg . €0

The instantaneous power delivered to the load is thus

2

Pa(t) = RI2(t) = %co&w) ,

and the average power (by the definition of “average”) is

/ _ & / ) dt
Pr=7 G RPT b W

(T is the period of one full cycle: T = 27 /w).

Since
1 /T cos?(wt) dt = cos?(wt) = 1
T Jo o 97
we have 1 R£2
P
R 20 +R)?

If we consider Py, to be a function 1 of R, we can easily show that it reaches a maximum when
R =r. The following plot shows Pg (in units of £/r) versus R (in units of r):
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As stated in the problem, the maximum power is delivered to a load when the load “impedance”
(R) is equal to the generator impedance (7). In the case under consideration we are not de-
livering maximum power to the load because R > r. Our given values for R, r, and &
yield

— 1 (15)(150)2

Pp=--t""0 ~TI2W
"7 2(04 +15) ’

which is far below the maximum possible power to the load.

(b) We now want to increase the power delivered to the load by matching impedances. We
do this by inserting a transformer into the circuit as follows:

A A

N, H N, R§

B B’
As in problem 1, we attach a voltmeter between points A and B across the primary trans-
former coil and call its reading V;. Similarly, a voltmeter attached between A’ and B’ across
the secondary reads a voltage that we will call V5. For an ideal transformer and an A.C.
voltage source, V; and V, defined in this manner will satisfy (1) and (2) from problem 1.
For convenience, we’ll define = N; /N, to be the ratio of turns between the two coils. The
instantaneous power transferred to the load R is

€D

Py =RI? . (3)

What is I,? From the diagram,
‘/1 = S - TII 3
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Making use of (1) and (2), this becomes
aVo =€ —rhja .
Since V3 = RI, (Ohm’s law), we have
a(RL)=E—rhL/a

or solving for I,
£
Lh=—— .
7 (aR+r/a)
Plugging this into (3), we get

2 202
P, = RE _ o RE ‘ (4)
(aR+r/a)? (r+a?R)?

If we consider P to be a function of o2, it is small for both very small o and very large
a?, so that it must go through a maximum at some intermediate value of a?. To find that
value, we differentiate (4) with respect to o? and set it to zero, giving

1 20°R
RE? — =0
[(r +a?R)?  (r+ onR)3] ’
or
20°R _0
r+ a?R ’
Solving for a? gives
N\? r N T 0.4
2 1 1
=|—=] == — =4/ ==4/—=~0.163
@ (NQ) RN, VE- V15

for maximum power to load.

(c) The corresponding maximum value of P, is found from (4) with o® = r/R:

(r/R)RE*  r&* &7
(r+(r/R)R)? 42 4r

P2:

Time averaging gives

)

&2 (150)
P2 = — =
8r 8(0.4)

Compare this with our result from part (a).

~ 7030 W .
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Problem 7.3

RC circuit. (Giancoli 26-45.) R,
For convenience, define currents, charge, and polarity as VYV W
shown in the diagram at right. + I I +0
R ;l —
Two applications of Kirchhof’s loop rule, one application _8 2 I, Cl|-0
of the junction rule, and the definition of current give us 2
the following four equations:
& = LR +Q/C (5)
£ = LR, + LR, (6)
L = L+1; (7)
dQ
I = — . 8
’ dt (®)
Subtracting (6) from (5), we get
Q Q
— — LRy, =0=1,= :
C pa20) = 1o R,C

Substituting this into (7) to eliminate I gives

Q
R,C

I1: +I3 .

Now we plug this in for 1 in (5):

&= (R?C+I3)Rl+%

RN\ Q
( +R2)C+R1 3

Finally, making use of (8), we have

dQ R\ Q@

£=Rr% (1 ) .
it T TR C
This is now analogous to the differential equation for the charge on the capacitor in a simple

RC circuit,

9
£ =
R+ Q :
with the replacements
C
R—-R, C—o—8w—— . 9
1 1 + RI/RQ ( >

Thus the problem is now solved by analogy to the simple RC-circuit case, as described in
Giancoli section 26-4 (see pp. 669-671).
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(a) The time constant “7 = RC” for charging the capacitor is obtained using the replace-
ments (9):

_ RC

1+ R,/R,

(b) The charge on the capacitor as a function of time will be given by Giancoli Equation
(26-5a) with the replacements (9):

Cg —t/7
Q=1 R R, (=)

T

The maximum charge on the capacitor is then

. e
Quax = B Q) = 17 7R,
Problem 7.4
RC circuit. (Giancoli 26-46.)
Switch open: Switch closed:
+ +
R § _1#9 R § _1*9
1 -0 1 _Ql
Vv a b Vv a=
R § _1#9 R § _1*9
2 —T 2 CT—
C2 -0 ~ 2 _Q2

Define symbols as shown in the diagram, for algebraic convenience. Effective circuits for the
open-switch and closed-switch cases are shown.

(a) With the switch open and the capacitors fully charged, there is no current in the capacitor
branch of the circuit. For the resistor branch we simply have

v

V=R1+R)]I = I=
(B + Bo) R+ R,

Taking our zero-voltage to be at the negative terminal of the source, the potential at point
“a” will simply be the voltage across Ry:

VR,  (24)(4.4)

V,=1IR, = = -8V .
a "R +R, 88+44
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(b) With the switch open, the two capacitors are wired in series, with an effective capacitance

GGy
CC+ 0,
Each one will have the same charge () on its plates, where
CCy
=OV=V( )
@ C,+C,

Relative to our chosen zero-point, the potential at “b” will be the voltage across Cs alone:

Q VO (24)(0.48 x 107%)

= v — = =16V .
02 01 + 02 0.48 x 10— +0.24 x 10—

Vo

(c) With the switch closed and the capacitors fully charged, the only current in the circuit
is still a single current I passing entirely through both resistors, with

v

V=(R +R) — [=-—"
(R1+ Ry) R, + R,

as before. The voltages across the individual resistors therefore remain the same. However,
the voltages across the capacitors are now equal to the voltages across their corresponding
resistors, unlike before. “a” and “b” have become effectively the same point in the circuit;
the new potential at “b” is equal to the (unchanged) potential at “a”, which is the voltage
across Ry:

Vi =IR, =8V (same as part (a)).

(d) Before the switch is closed, both capacitors carry a charge

CCy ) (24)(0.48 x 107¢)(0.24 x 1079)

0.48 x 10— +0.24 x 10~

So the net charge on the bottom plate of C; and the top plate of Cy (which together are
isolated from charge flow from the rest of the circuit) is —3.84 uC + 3.84 uC = 0.

After the switch is closed, the voltage across Cy is Vo = 8V, and the voltage across C; is
Vi =24 -8 =16V. The final charges on the two capacitors are therefore
Q1 =CV; = (048 x 107%)(16) = 7.68uC |,
Q2 = CoVo = (0.24 x 107%)(8) = 1.92uC .

Now the net charge on the bottom plate of C; and the top plate of C5 is —7.68 uC+1.92 uC =
—5.76 uC. So we may conclude that —5.76 uC flows to the right through the switch after
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closing. (Or, +5.76 uC flows to the left, depending on your perspective!)

Problem 7.5

Electromagnet with small air gap.

We will assume that the magnetic field is
azimuthal. Because there are no magnetic
monopoles, the B-field lines form closed loops,
and the number of lines will therefore be con-
tinuous across the air-steel interface in the gap.
So the magnetic field strength in the gap will
be approximately equal to the magnetic field
strength in the steel.

In the presence of materials with non-zero
magnetic susceptibility, Ampeére’s law (without
Maxwell’s correction) becomes

1
7{—B ~dl = polena
KM
where kjs is the relative permeability of the material (see Giancoli sections 28-9 and 28-10
(pp. 724-726), and take Ky, <> kar). Applying this form of Ampere’s law to the dashed loop
and shaded open surface shown in the diagram (and defining I, N, R, and d as shown, for
convenience):
1
/ " Bedi+ [ B-dl=pNI
S

teel KAf gap
(kyr =1 in air to a very good approximation: air is practically vacuum compared to steel).
Note that the total current through our open surface is NI, because the wire cuts the surface
N times. With our knowledge that B in the gap is (approximately) the same as B in the
steel, we have

B [QWR —d
RM

+ d] = IU/ONI ’
and since 27R — d ~ 27 R,

NI (4m x 1077)(120)(15)

o~ = ~0.8T .
2R /ry +d  (2m)(0.07)/2500 + 2.5 x 10-3

There are two points worth commenting on here. First, our assumption that B in the gap
is the same as B in the steel is only good if the width of the gap is small compared to the
cross-sectional radius of the electromagnet (2.5mm compared to ~ 1cm here). In actual
fact, fringing fields will cause the magnetic field in the gap to be less than in the steel, and
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the problem gets worse as the gap gets wider compared to the cross-sectional radius. Second,
note that even though d < 27 R, the major contribution to the integral

1
7{ —~B-d
Ry
comes from the gap, because k3 = 1 there. Over the longer path in the steel, the large value
of ks there reduces the contribution to the line integral to /ess than that of the gap.

Problem 7.6
RC circuit.

(a) First consider the time interval 0 < ¢ < T/2. During this interval the driving voltage is
constant (V = V}), and we have

Vo = Ve+V¢

RI+Q/C

_ pdQ @
—Rdt—i-o.

With 7 = RC, the general solution to this differential equation is
Q(t) =CVy + Ae™"/™ |

where A is an integration constant. To determine A, we consider our initial conditions. Since
V(t) = 0 for t < 0, the charge @ on the capacitor is zero for ¢ < 0 and also right at £ = 0.
For this to be true, we must have A = —C'V}, and thus

Q) =CVy (1—e7) for 0<t<T/2 .

Since C/T = 1/R, we have for the current in the circuit

d Vi
_ Q — _Oe—t/r

I(t)_% 7 (0<t<T/2).

The voltage across the capacitor is Q/C, or
Vet)y=Vo(1-¢")  (0<t<T/2)

The power delivered from the source (not to be confused with the power dissipated in the
resistor!) is in general P = IV(t), so for V(t) = V; during the first half-period,

V2
Lemtm (0<t<T/2).

P(t) ==L
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Now let’s consider the interval T/2 < t < T. Here we have V() = 0, and the equation for

() becomes
aQ  Q
Fete=0"

The general solution (7 = RC') is now
Q(t) =Que ™ (T/2<t<T),

where () is a constant to be determined. Since our solutions for @(f) in the intervals
T/2<t<Tand 0<t<T/2must match at t =T/2, we must have

C% (1 _ e—T/Qr) — QOG_T/QT )

Now, 7 = RC = (40)(150 x 107%) = 6ms, while T = 0.3s. So e~7/?" <« 1, and we may
neglect that term relative to 1, giving

Qo = C‘/()€+T/ o

and thus
Q(t) = CVoe &T/T  (T/2 <t < T).

We then have

1) = % Vot ppp <),

dt R
Volt) = Q/C=Vee T (T2<t<T),
P(t) = IV(t)=0 (T/2<t<T).

(b) After one full period, the whole pattern repeats again. A graph of V (¢), Vi (), and
Vr(t) = IR over two full periods follows:

20 ! ! ! ! !
15 | j . — s — .
1 - S -
— 5 :‘\‘ """"""""""""""""""""""""""""""""""""""""""""""" %‘\ """""""""""""""""""""""""""""""" .
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T T S JII:' ,,,,,,,,,,,,,,,,,,, R R — — L S R |
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(c) The instantaneous power dissipated in the resistor is I?R, so the energy dissipated in
the resistor over one period is

T T/2
/ PRdt = 2/ I°Rdt
0 0

V2 rT/2
— 2_0 —2t/7dt
R Jo ¢
= CV{ (1 - e_T/T)
~ C’VO2

= (150 x 107%)(15)* ~ 34mJ .

The instantaneous power delivered by the power supply is V () I. The total energy delivered
by the power supply over one period, is therefore

T/2

T
/ V() Idt = Voldt (V) =0for T/2<t<T.)
0 0

V02 T/2

R Jo

— 0%2 (1_€—T/27')
~ CV} .

So, over one full cycle, the energy delivered by the power supply is equal to the energy dis-
sipated as heat in the resistor. This result is inevitable from an energy-conservation point
of view: over one full cycle, the capacitor is charged and then discharged, so no net energy
is delivered to the capacitor, and all energy delivered by the power supply during one cycle
must end up being dissipated in the resistor.

Energy Budget

We can now draw up a more detailed energy budget: towards the end of the first half of
a cycle, the capacitor is essentially fully charged. It therefore contains %QVO = %C’VO2 of
electrostatic potential energy. During the subsequent discharge period (when V () = 0), this
energy must come out in the resistor in the form of heat. Since the total energy dissipated
during a full cycle is CV{, we can conclude that an equal amount of energy 1CV{ was
dissipated in the resistor during the charge-up period. This is obvious since the curve of
current vs. time in one full cycle (T sec) shows two current “pulses” which are identical
in shape. Their signs differ, but this difference disappears as the power dissipated in the
resistor is proportional to I2.

END



