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MIT 8.02 Spring 2002
Assignment #5 Solutions

Problem 5.1

High voltage power transmission.

The simple circuit diagram at right can be used in the analysis
of this power transmission system. The power station acts as
a “battery” of voltage V. Three “resistors”, two of resistances
R/2 (the power lines) and one of resistance Ry, (the “load re-
sistance” of the power consumers), are wired to the battery
in series. Voltages are as shown at various points about the
circuit. We find that the voltage delivered to the power con-
sumers is V — AV =V — IR, so therefore AV = IR is the
total voltage drop along the power lines and R is the total
resistance of the lines. 0 IR

(Note: we have taken V' = 0 at a particular point, but the choice is totally arbitrary. Voltage
differences between points about the circuit are unaffected by this choice.)

(a) The resistivity of aluminum at +40°C and at —40°C can be found using Giancoli Equa-
tion (25-5) (p. 641):
pr=p[l + (T - T)] .
Giancoli Table 25-1 {p. 640) gives py = 2.65 X 1073 Q- m and « = 0.00429°C~* for aluminum
at Ty = 20°C. This gives us
prw = (2.65x 107%)[1 + (0.00429)(40 — 20)] = 2.88 x 1078 Q- m ,
p—1n = (2.65x 107%)[1 + (0.00429)(—40 — 20)] = 1.97 x 107°Q - m .
Resistances can then be calculated using Giancoli Equation (25-3) (p. 640). First we convert
units: 2 X 300 miles = 9.66 x 10° m and 5cm? =5 x 107 m?.
Ry = (2.88x1078)(9.66 x 10%)/(5 x 107) =560 ,
R_yp = (1.97 x 107%)(9.66 x 10°)/(5 x 107%) = 3802 .

(b) By Ohm’s law, the voltage drop along the lines is simply AV = IR. P = VI is the total
power transmitted by the power station, so I = P/V, and we may write AV = RP/V.

(¢) Imposing AV = RP/V = (0.02)V gives us

V =/RP/(0.02) .
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Putting in P = 2 x 10*W and our two values for R, we find
Vinin4a0 =75 X 10°V | Vigin_49 =62 x 10°V .
(d) The power dissipated in the lines will be
AP =AVI=(002)VI =(0.02)P =4 MW
for both temperatures.

(e) Giancoli Equation (28-2) {p. 711) gives the force per unit length between two parallel
current-carrying wires. Both of our wires carry the same current I, so (with d = 8 m and
[ =25m)

?U’U 125
T d
Using I = (0.02) P/R and plugging in known values gives
2 x 10%)(2
Foyg = (2x 10‘@(0.02)% = 0.045N |,
8
Fp = (2x 10-7)(0.02)% — 0.066N .

Since the currents in the two wires run in opposite directions, this force between the wires
is repulsive.
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Problem 5.2

Ampere’s law in action. (Giancoli 28-27.)

Consider the diagram at right, showing a cross-section
through the cable. Assume the current I flows “out of
the page” in the core and “into the page” in the shell.
The cylindrical symmetry of the system tells us that the
magnetic field lines will be circles centered on the cable
axis, and the magnetic field strength will depend only
on distance R from the axis. So we may construct an
“Amperian loop” of radius R centered on the cable axis
as shown, knowing that B will always be tangent to the
loop and will have a constant magnitude around the loop.

Applying Ampere’s law to our loop with counterclockwise circulation, we find

fB-dz:dezzdezzB(sz) = polona

Ho I encl

=B ,
2R

where B is the component of B in the counterclockwise azimuthal direction (the only non-
zero component of B). Our task now is to find I, for the various regions of interest.

(a) The current [y in the core is distributed uniformly throughout its cross-sectional area of
wR2. An Amperian loop of radius R < R; encloses an area of 7 R?, and will therefore enclose
a fraction of this total current given by the ratio of these two areas: Imq = I{R%*/R}).
Plugging this into our expression for B, we have

I

p_ M ofl
27 R}

(Note that we have regarded the enclosed current as positive, since it flows in the same

direction as the normal to the surface bounded by our Amperian loop, given our choice of
counterclockwise circulation.)

(R < Ry).

(b) An Amperian loop of radius R in the region R; < R < Ry will enclose all of the current
Iy in the core and none of the current in the shell, so we simply have

B:gi—g (R1 < R < Ry).
(¢) The outer shell carries a current —I (negative because it is directed opposite to the
normal to the surface bounded by our counterclockwise Amperian loop) which is distributed
uniformly throughout its cross-sectional area of w(R3 — R3). A loop in the region By < R <
R3 will enclose w{R? — R2) worth of shell cross-section, and thus will enclose a fraction of
the shell current given by —Iy(R? — R})/(Rj — R3). The loop also encloses the full Iy of the
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core, so in this region Ieng = Lyl — (R? — R3)/(R3 — R3)]. Plugging in to get B:

polo (R’ — R3)
B="—"|1—-——2£ < R < Rg).

|l (o) (<R<m
(d) Finally, in the region R > Rj3, our loop encloses the full I of the core and the full —I
of the shell. I,g = 0, giving

(Note: when we say “loop X encloses current Y”, strictly speaking we mean “current Y
passes through an open surface bounded by loop X”.)

Beyond the call of homework-duty: 12

Just to get a better feel for the depen- 1

dence of B on R, we can take Ry = 2R,

R; = 3R, and plot B(R), as shown at 0.8 / AN

right. R is plotted in units of B; and B o 96 AN

in units of poly/27R,. Note that B(R) is // \\
continuous everywhere. Discontinuities in 0.4 / \
B only come from sheets of current, just as 0.2

discontinuities in £ only come from sheets

of charge. 0

0 05 1 15 2 25 3 35
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Problem 5.3

Magnetic field of a current-carrying ribbon.

(B-field lines of
an individual strip)

To solve for the magnetic field of a current-carrying ribbon, we break it up conceptually
(and mathematically) into many infinitesimal strips which may be regarded as wires. The
principle of linear superposition tells us that the magnetic field of the ribbon will be the
vector sum of the magnetic field contributions of the individual strips.

Consider a little strip of width di, located a distance { from the right edge of the ribbon as
shown in the diagram above. The strip carries a current I di/w and is located a distance
[ 4+ x from the point in the plane of the ribbon at which we wish to determine the field. The
differential contribution to the field at the point of interest due to this strip is just the field
due to a long straight wire:

ol dl/w

C 2r{x+1)
directed downward by the right-hand rule. To find the total field we simply integrate over
the ribbon from [ = 0 to { = w (making the substitution v = z + {, du = dl):

I I retw I
2rw o {x+1) 2rwls  uw 27w z
(Again, the field is directed downward, perpendicular to both the plane of the ribbon and
the direction of current flow.)

To examine the limit w — 0, we make use of the first-order Taylor expansion of the natural
logarithm: In{1+4§) ~ § for § <« 1 (check out Giancoli Appendix A-3). As w — 0, w/x <« 1,

80
B—)—'UUI (E) :'U—UI .
2w \x 2rx

This is just what we would expect a distance x away from a wire carrying current 1.
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We have taken the limit w — 0 at fixed x (the “skinny ribbon limit”), but we could equally
well view this as the limit £ — oo at fixed w (the “far away limit”): far enough away, ony
ribbon will look like a wire. What is important is that w/z < 1.

Problem 5.4
Force on loop. {Giancoli 29-14.)

For convenience, we’ll define the following
variables to work with:

0.350 m w

w X | x x x Vv
B = 0450T S VR

R = 0.230Q AR —

v 3.40m/s B vdt

L

In a small time interval dt, the loop moves a distance v df, and thus the area of the loop
within the B-field region decreases by an amount dA = wv df. The field magnitude remains
constant, s0 the magnetic flux through the plane surface bounded by the loop decreases by
an amount d®gz = BdA = Bwvdt. By Faraday’s law (Giancoli Equation (29-2a), p. 736),
the magnitude of the induced emf will be

d®g

pr = Bwv .

€] =

This will induce a clockwise current in the loop {clockwise to oppose the change in flux:
that’s Lenz’s law) of magnitude

I=|&|/R=Bwv/R .

As this current flows upwards through the left edge of the loop in the B-field region, that
edge will experience a force directed to the left as given by the Lorentz force law (in the
form of Giancoli Equation (27-3), p. 691):

F = IwB = B*w’v/R = (0.450)%(0.350)*(3.40) /(0.230) = 0.367 N .

So to keep the loop moving with constant speed, someone or something must pull the loop
to the right with an equal 0.367 N of force.
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Problem 5.5
Betatron. (Giancoli 29-49.)

(a) The changing magnetic field changes the magnetic flux through an open surface bounded
by the electron orbital path. By Faraday’s law this will induce an emf around the vacuum
tube: a non-zero § E - dl, the E of which will serve to accelerate the electrons.

(b) The diagram at right corresponds to Giancoli Fig-
ure 29-37 (p. 754) as viewed looking down from above.
Electrons moving in the vacuum tube are held in their
circular orbits by a magnetic force given by F = gv x B.
If the electrons were moving counterclockwise, this force
would be directed outwards, and would not serve to hold
the electrons in orbit (see diagram, and remember: the . ,
charge of the electron is negative). However, clockwise- . B .
moving electrons will feel an énward magnetic force. So o X o
the electrons must be moving clockwise. X T X

(¢) To accelerate our clockwise-moving electrons to higher speeds, we need a counterclockwise
emf, since negatively charged particles accelerate in the direction opposite to the E-field.
Faraday-Lenz tells us that increasing the magnitude of the B-field “into the paper” in our
diagram above will induce such a counterclockwise emf, for the magnetic field due to a coun-
terclockwise electric current would tend to offset the change in flux due to such an increase.

(d) If the electromagnet is AC, then the magnetic field will vary sinusoidally in time. Say
it starts from zero and begins increasing into the page. During the first quarter-cycle, the
B-field will have the right direction for confining clockwise-orbiting electrons and it will be
changing in such a way as to induce a counterclockwise emf that will accelerate these elec-
trons to higher speeds. But starting with the second quarter-cycle, the B-field magnitude
will be decreasing. The field direction will still serve to confine clockwise electrons, but the
induced emf will now be clockwise, and will tend to slow these electrons down. So useful
acceleration is only possible during one quarter-cycle.
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Problem 5.6
Intuition breaks down.
(“Test 1”7 of March 15 lecture supplement.)

We may analyze this situation in exacly the same way as is done for the example circuit
in the Lecture Supplement. There is one important change: if we aftach to the left closed
loop an open surface, there now is a magnetic flur change through thai surface. So equations
(3)—(5) of the supplement become

Left lOOp: I]_& + I]_R]_ - IR]_ =& 5
Middle lOOp: IR]_ + IRQ - I]_R]_ - IgRg =& 5
Right loop: LRy — IRy + LR, =0 .
Only the left-loop equation has changed, to reflect the use of Faraday’s law instead of Kirch-

hoff’s 2nd. The same approximations as described in the supplement hold, so the equations
become

LR, —IR =~ &, (1)
I(Ri+Ry) =~ &, (2)
LR, —IR, =~ 0 . (3)

If we connect the two voltmeter terminals as described in the supplement (“+” to A-side
and “—” to D-side), then positive I; will give positive V1 and positive I will give negative
Va. From (1) and (3) above, we have

Vi| = LR;=IR +¢& ,
V| = LR;i~IR, .

(2) tells us that £ and I will always have the same sign, and therefore it follows from (1) and
(3) that I, and I, have the same sign as /. Therefore V; and V> will always have opposite
signs. The relative voltage magnitude is

IR\ +€ R £

WY~ R =R TR
Eliminating £/1 using {2), we get
Vi/Va| = 1+ 2R\ /R, .
If we take the numerical values given in the supplement example, with Ri/Rs = 1/9, we
have |V1/V5| = 11/9.

Consider now the possibility of not 1 but 100 windings of the left-hand loop about the entire
circuit (this is the “Test 2” scenario): £ — 100€ in equation (1) above (£ here is taken to
be the value of —d®g/dt through the surface of ONE LOOP!), leading to

|V1| = LR;= IR, +1008 |,
Vsl = LR;~IR, ,
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and then
IR AI0E _ B 1005 — 100+ 1002
1R, Ry 1R, R
For our numbers, this gives |Vi/Va| & 111. V5 has the same value as it had
before (5 Volt), but now V; reads $(111) & 100 Volts, which is one hundred

times the EMF &! This is the basic idea behind transformers.

Vi/Va| =

Problem 5.7
Fringe fields. (Giancoli 29-69.)

Consider first the possibility labeled (a) in the figure

at right: the electric field between the capacitor plates i
is uniform and directed exactly to the right, and drops H
abruptly to zero outside. If we integrate § E - dl coun-
terclockwise around the dashed path, we will get a pos-
itive contribution from the bottom segment, no contri-
bution from the top segment {E = 0 there), and no
contributions from either of the side segments (E 1 dl
there). So we will definitely get §E - dl # 0. At the
same time, this is supposedly an electrostatic configura-
tion with no magnetic fields (time-varying or otherwise)
s0 that d®g/dt = 0 through any open surface bounded
by the loop. But Faraday’s law in the form of Giancoli (a)
Equation (29-8) (p. 747) tells us that § E-dl = —d®g/dt!

So this is not a realizable static electric field.

Now consider the possibility illustrated by (b): the E-field “fringes” a bit at the edge of the
capacitor plates. Integrating § E2- dl around the same closed path as before, we will still get
a significant positive contribution from the bottom segment. But now, as we integrate up
the right-side segment, we will get some negative contribution due to the slight downward
component of E. Integrating to the left along the top segment, we will get another negative
contribution, since E will not have dropped exactly to zero. Integrating down along the
left-side edge, we get yet another negative contribution, due to the slight upward component
of E there. Again we conclude that d®g/dt = 0 due to the absence of magnetic fields.
However, our results are no longer inconsistent with Faraday’s law, for the positive and
negative contributions to our integral § E - dl may (and in fact must!) cancel one another
out to give zero. Therefore (b) depicts the actual static electric field configuration of a
charged parallel-plate capacitor.

END



