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MIT 8.02 Spring 2002
Assignment #3 Solutions

Problem 3.1

Capacitors in series and parallel. {Giancoli 24-23.)

C 1‘ ‘ (a) First we find the equivalent capacitance Caz of the C5-Cj
‘ ‘ combination. These two capacitors are combined in series, s0
we have

B 1 1y}
/ Cas = (62 + 53)

, . (53 can then be combined in parallel with 4, giving for the
‘ | ‘ ‘ ‘ equivalent capacitance of the entire combination

T 11y
Ceqzcl+cz3zol+(a+53)

n?-— V—-n

(b) In general we have @1 = C1V3, Q2 = C5Va, and Q3 = C3V5. Given the imposed voltage
V and the parallel wiring of C; with the C3-C5 combination, we must have V; = V and
Va+ V3 = V, or equivalently @1/Ct = V and Q2/Cs + Q3/C5 = V. In addition, charge
conservation requires that @2 = @3 (consider the portion of the circuit enclosed by the
dashed box in the figure above: charge cannot flow into or out of this part of the circuit, so
if it carries no net charge initially, the charge on the right-hand plate of C5 must always be
equal and opposite to the charge on the left-hand plate of C5). Letting C1 = Cy = 2C5 = C,

then, we find
QIZCV, Q2:Q3:CV/3 .

Plugging in the given numerical values,
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Problem 3.2

o o7, c
Switching capacitors Gl g
(a) With switch B open and switch A closed, Cy C——_
is out of the picture, and the circuit is effectively —21 _1¢
as shown in the diagram at right. If V =120Vis ——F———- — Vv
the battery voltage, we must have C,
__+Q
Vi+WVa+Vs=V . T

By the same sort of charge-conservation argument as in problem 3.1, all three capacitors
must necessarily have the same charge =€) on their plates. Since all three have the same
capacitance as well {call it “C”), we have

Q@ = CV=CVa=CV;
> Vi=Vh=V=V/3=40V .

Once the capacitors are charged in this manner, the potential across each will remain the
same even after the opening of switch A.

(b) Opening switch A has taken the circuit branch containing the

C, battery out of the game, but not before charging capacitors C4, Cs,
:::"QQ and Cj3 as described in part (a). Now, closing switch B brings C)

back into play, and the circuit is effectively as shown at left. ]
2 €, and C5 will still each carry the same charge @ as before {opening
switch A leaves them isolated from any flow of charge). However, the
c, I charge () that originally resided on C'; alone will now be distributed

—+0 between Cs and Cjy. As (3 = (Y, by symmetry we will have a charge
71 - (/2 on each, and the voltage across Cy and C will thus be half the
L . original voltage across C5. So then,

Vi=V3=40V, Vb=Va=20V .

(¢) With the capacitors initially uncharged and switch A open, closing switch B does not
provide a potential across any of the capacitors, for the circuit branch containing the battery
is effectively disconnected.

(d) Now we close switch A, with switch B previ-
ously closed. The circuit is as shown at right. The
effective capacitance of the C5-C) parallel combi- C, )
nation is Cy = C' 4+ C = 2C. The entire four- ——+Q_'
capacitor system has an equivalent capacitance

G, 0T ™ C,
C o ( 1 + 1 + 1 )_1 {total) s
o Cy Cu O C i
1 1 1 2 — L0

-1
- (c*wte) —5¢ —T1—2
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and thus the charge drawn from the battery and onto each of C}, Cy, and Cj is
2
QI - Ceqv — ECV .

Now we can determine the potential differences across the various capacitors:

Q& 2
‘.r — ‘.r - = _ _‘2 — 4 v/
' T C s 8
and , )
Vo =V _——;_——V =24V .
2 T oC 5

Problem 3.3

The effect of a dielectric medium on the capacitance. (Giancoli 24-60.)

I-x

-

(a) To get the total capacitance of this arrangement, we consider it to be the equivalent of
two capacitors in parallel, as shown above. The “capacitor” on the left (no dielectric) has
plate area I{l — z) and (by Giancoli equation 24-2, p. 615) capacitance €yl({ — x)/d. The
“capacitor” on the right (with dielectric) has area Iz and capacitance Keglz/d. Thus the
total capacitance is the sum of these:

0:%5(;(_1)“;]

When z = 0 this reduces to ¢i>/d, and when z = | we get Ke¢yl?/d; these are the proper
limits.

(b) With a potential difference V5, the energy stored in this capacitor will be given by
Giancoli equation 24-5 {(p. 620):

_Le &l 2
U= 30V = (K = Dz +1I%

(¢) Suppose we move the slab a little bit further in between the plates, increasing x by an
amount Az. The potential difference (provided by a battery, perhaps) remains constant
while the capacitance increases a bit, so the change in stored energy will be

1 1
AU = chv[f — Ec:,;v[,2

_ ol 2
= Zd(K DAzVy
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which represents an increase (remember, K > 1). Does this mean that we have done positive
work to move the slab in, pushing against an outward force? No it does not, for the battery
has also done work on the capacitor/dielectric system! The charge on the capacitor has
increased by an amount

AQ = CiVa—CiV,

- %E(K—l)Aa:VU ,

and to put that charge there the battery has done an amount of work

ol
Waattery = AQVp = %(K — DAZVy .

The work we have done is then related through

AU = Wbattexy + Wus
= Wus = AU - Wbattexy

6[]-‘1r

—%(K— DAzVy .

So we have actually done negaiive work on the system, and there must be an electric force
pulling the slab inwards, balancing our force on the slab:

Wis = FeAr = —FaeAx

= Fee = ;—‘g(K — 1)V (pulling slab inward.)

What is the nature of this electric force? The charge on the

plates of the capacitor induces an opposite charge on the

surfaces of the dielectric slab. At the edges of the capacitor,

charge is induced on the slab even a bit beyond the capac-

itor plates (see diagram at right). This induced charge is

attracted to the charge on the capacitor plates, and there is

an inward component to this force, pulling the slab further
in between the plates.

+ ++++++++
[
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Problem 3.4

Comparing cylindrical and spherical capacitors.

(a) We compute the capacitance of the spherical capacitor using the result of Giancoli
Example 24-3 (p. 617):

RRy

(0.06)(0.09)
Ry — Ry

Cspn = dmeo ( 0.09 — 0.06

) — 47(8.85 x 10712) ( ) —200x 1072 F .

For the cylindrical capacitor, we use the result of Giancoli Example 24-2 (p. 616):

= = — 2. ]_ F .
Cort = (R ) In(0.09,0.06) 0610

These are nearly equal because the plate separation is the same in both cases, and the area
of the plates is nearly the same, which (as we will show below) leads to about the same
capacitance in the two cases.

(b) For Ry = R, + 6 (§ < R;), we have for the spherical capacitor

(1 +5/R1) )

4 2
O — ey ( Ri(R1+96) ) 4R}

Ri+6—-RJ 5

As §/R; < 1, to leading order this is simply Cyon = €gA/6, where A = 47 R? is the area of
either shell. This is the parallel-plate capacitor formula.

For the cylindrical capacitor, we will make use of the following formula, which you may verify
by means of a first-order Taylor expansion (see Giancoli Appendix A, p. A-1):

forr <1, In(l+z)=z .

The capaitance is
2meg L . 27R.L

Cort = e o)

Again, this is simply C¢1 = €A/d, where now A = 27R,L is the area of either of the
cylindrical shells. So we see that whenever plate separation becomes very small compared to
plate dimensions, even capacitors with curved geometry may be approximated as parallel-
plate capacitors.
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Problem 3.5
The Van de Graaff.

(a) We are given that the electric field on either side of the belt is £ = 10° V/m. We can
relate this to the surface charge density ¢ by the result of Giancoli Example 22-6 (p. 583):

E= % = 0= 2F = 2(8.85 x 1072)(10%) = 18 uC/m? .
The belt is traveling with speed v = 30 m/s and has
width w = 0.5 m. In a time interval d? a length v df of the T - A A
belt passes any given position (see diagram at right). The =——V . G . w
area of the belt that passes this position will be wvdf, ___ 2 2
and the charge passing by in time di will be dQ = cwwv di. v dt
So the current carried by the belt is

_dQ
Cdt

I = owv = (18 x 107%)(0.5)(30) = 2.7 x 107* A .

(b) The maximum electric field just outside the spherical dome will be the breakdown field
for air, Enae = 3 X 10° V/m (see Giancoli Example 23-5, p. 596, or problem 2.6 from
Assignment #2.) The electric field just outside the surface of the dome will be related to
the total charge on the dome by

1
= Fﬁg% {(Giancoli Example 23-4, p. 596),

s0 the maximum charge that the dome can hold is
Qmax = dmeg B2 Eppy = 4m(8.85 x 107)(3 x 109)R* = (3.3 x 107* C)R?

(for R measured in meters). If the dome is being charged at a rate of I = 2.7 x 10~*
Coulombs/second, then the time required to charge the dome will be

At = Quax/I = (1.2 5)R* .

(¢) The maximum electrostatic potential of the dome is {again, see Giancoli Example 23-5,
p. 596)
Vinax = REmax = 3 x 10° V)R .

(d) For R = 0.15 m,
Qumax = 7.4 uC, At=0.027s , and Vye =45 x 10°V .
For B = 0.5 m,
Quax =83 uC, At =035 , and Vs = 1.5x10°V .
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Problem 3.6
Resistor circuit. {Giancoli 26-25.)

Let I; and I be the currents in resistors B, and R, re-
spectively, with the sense of positive current flow as shown ‘ V, R
in the diagram at right. Kirchhoff’s loop rule applied to a ..o L
loop around the outside of the circuit {(dotted path in dia- | ‘ |

gram) gives us the relation V1 +V3 = L R;. Taking a second

loop around just the lower half of the circuit (dashed path

in diagram) gives V3 = IsRy. Solving for the currents and R, »’\
plugging in given voltages and resistances, we have e MM __________ l
SASARY

L = (Vi +V3)/Ri =068 A, V - ¢

Iy = V3/Rp=04A . Vﬂ
o 'I' _____________ [

Both I, and I, are positive, so the current through each " |’ """""""""""""""""""" ';
resistor is directed “to the left”.

Problem 3.7

Resistor network.

R R

A AAAATL B 2 D
R4

1V

N E Dz
P
v, ‘V3
—] |
G R5 M ‘l N

(R, Ry, Ry, Ra, Rs) = (10, 30,50, 70, 100)Q2

(Vi Va, Vi) = (12,24, 36)V

(a) We'll designate the currents in the left and right parts of the circuit by 71, and I, and
take them to be in the sense shown in the diagram above. The current through A, and V;
is then I, + Ir upward, by conservation of charge (Kirchhoff’s junction rule). If we move
around the left circuit, Kirchhoff’s loop rule says that the sum of the EMFs and voltage
drops must be zero. This gives

+1/1 - ILR5 - Vg - (IL -+ IR)R4 - ILR]_ - 0 .
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The sign of V] is positive here because we are moving from the negative terminal to the
positive terminal of that battery. In the case of V3, we are moving from the positive to the
negative terminal, giving us a negative sign. Moving in a loop around the right-hand part
of the circuit gives

+Vs—Vo— (I + Ig)Ry — IgRy — IgR3 =0 .
If we rearrange these two equations, we get

(Ri+Ra+ R)I+ (Ry)lg = Vi—-Vo
(R)I+(Ra+ R3+Ry)Ig = V3—-V5 .

To save ourselves an algebraic headache, we can insert the given numerical values for the
resistances and battery voltages (in SI units) at this point:

180IL+70IR = —12 f

The solution of this system gives
IL = —119 mA y IR: 136 mA y IL+IR: 16.3 mA .

Having obtained a negative value for I, we realize that the current in the left-hand side of
the circuit in fact flows in a clockwise sense. To summarize the current picture:

e 119 mA flows clockwise through R; and Rj,
e 136 mA flows clockwise through Rs and Rj3, and
e 16.3 mA flows upwards through R,.

b
® Va— Ve = —(16.3 x 1073)(70) + (119 x 1073)(10) = 0.049 V .

Note that the potential drops as we go through the 70 Q resistor (R,), because we go through
with the current, but rises as we go through the 10 Q resistor {R:), because we go through

against the current.
Vo—-Ww=+36V-24V=12V .

Vo — Vo = +(136 x 1073)(30) + (119 x 1073)(10) + 12V =17.3 V .
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Problem 3.8
Wire resistance. {Giancoli 25-52.)

(a) The resistance of the wire is simply
R =V/I =(22.0 x 1073)/(750 x 1073) = 29.3 mQ .

(b) From equation 25-3 of Giancoli (p. 640), we can solve for the resistivity of the wire in
terms of its resistance, length I, and cross-sectional area A:

p=RA/ = (293 x 1077 (107%)%/(5.00) = 1.84 x 107* Q- m
(¢) The current density is simply the current per unit cross-sectional area in the wire:
§=1/A= (750 x 1073) /(7 x (107%)%) = 2.39 x 10° A/m” .
(d) From Giancoli equation 25-17 (p. 649), we have for the electric field in the wire
E=pj={184x107%)(2.39 x 10°) = 4.40 x 107 V/m .

(e) Giancoli equation 25-14 (p. 648) gives us the free-electron number density (we’ll ignore
+-sign issues):

n=j/evg = (2.39 x 10%) /{(1.6 x 1071%)(1.7 x 107°)) = 8.8 x 10% electrons/m® .
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Problem 3.9

Energy consumption of heater, etc. (Giancoli 25-61.)

(a) The household’s various daily energy usages are:

Uheater = 1.8 kW x 3.0 h = 5.4 kWh
Uignis = 4x 0.1 kW x 6.0 h =24 kWh
Usiove = 3.0kW x1.4h=4.2kWh
Umiee = 2.0kWh

So the total energy used by the household in a day is
Usotal = Uneater + Vhignts + Ustove + Umige = 14 kWh |
and their monthly bill will be
30 x 14 kWh x $0.105/kWh = $44.10 .

(b) Let’s convert the energy yield of coal from kcal/kg to kWh/kg (see the inside front cover

of Giancoli):
1 kWh

860 kcal

A 35%-efficiency power plant will get 0.35 x 8.12 kWh/kg = 2.85 kWh/kg in usable energy
out of the coal. So the amount of coal to be burned yearly to meet the needs of the household
is

7000 keal/kg x = 8.12 kWh/kg .

kg

4kWhx 8
365 x 14 kWh X & Wh

~ 1800 kg .
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Problem 3.10
Electric car. (Giancoli 25-72.)

(a) Converting the car’s traveling speed to SI units gives v = 40 km/h = 11.1 m/s. The
car motor must supply a force that can balance the 240-N retarding force at the traveling
speed, so the required motor power is

P = Fy = (240)(11.1) = 2664 W ~ 3.6 horsepower
(from inside front cover of Giancoli: 1 horsepower = 746 W).
(b) The total on-board energy when the batteries are all fully charged is
U=26x12Vx52A-h=162kWh=584x10"J .
If d is the distance the car travels on one charge, we will have U = F'd, giving

d=U/F = (5.84 x 107)/(240) = 2.43 x 10° m = 243 km .

END



