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Problem 2.1

Flectric field of a point charge inside a hollow metal sphere: Gauss’s law in action.

Before attempting this problem, you should review Section 21-9 (pp. 562-63) and Example
22-7 (p. 584) of Giancoli. From these discussions, we know that: (1) the electric field is zero
inside the metal; (2) any charge on the metal must reside on the surface of the metal; (3)
the electric field just outside the metal must be normal to the surface, and the local surface
charge density satisfies o = €g£. Let us apply these general principles to the problem at hand.

(a) the +g¢ charge in the interior of the spherical metal
shell will induce a charge separation on the metal. Let
¢inner D€ the total charge induced on the inner surface, and
Qouter bhe total charge induced on the outer surface. Since
the sphere started out uncharged, charge conservation
dictates that we must have inner + Gouter = 0. What is
¢mer! lake a Gaussian surface lying entirely inside the
metal of the shell as shown in the diagram at right: the
total charge inside this surface i8 {giuner + ¢). But since
E is zero inside the metal,

fE-dA: (Gianer + @)/e0 =0 .

A%

qoutm'

Gaussian
Surface

Thus Guner = —¢, and therefore goyter =
+q. The distribution of @imer and ¢outer,
and the associated electric field lines, are
as shown in the sketch at left. The nega-
tive charge on the inner surface is concen-
trated toward that part of the sphere clos-
est to the +¢ interior charge. In contrast,
the positive charge on the outer surface is
uniformly distributed over the outer sur-
face. Why is it uniform there? Because the
metal is an equipotential, and there is no
charge outside {as there is inside), so that
we must have spherical symmetry outside.
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The only allowable solution for the electric field outside
is thus ¢ 1

 Amey 2 " (1)
as we have sketched above. Any other solution for the
E field outside (for example, see sketch at right) is not
permissible because the surface of the metal will not be
an equipotential for such topologies. For example, the
work required to bring a test charge in from oo along
field line 1 in the sketch would be greater than the work
required to bring a test charge in along field line 2, and
thus the metal would not be an equipotential for this
field. (Notice that the electric field strength near 1 is
larger than near 2, as the density of field lines is greater.)

To argue rigorously (as opposed to hand waving) that equation (1) is the only solution for
E outside, we need to appeal to something called the Uniqueness Theorem in electrostatics:
if you have one solution that satisfies all of your boundary and other conditions (metal is
an equipotential, no free charge outside the sphere), then it is the only solution (i.e. it is
unique). The proof of this is beyond the level of this course, so we must hand-wave.

(b) The charge distribution on the outside does not change as we move the +¢ inside around,
for the reasons given above. Of course, the charge induced on the inside surface does re-
distribute itself as we move +¢q, to insure that we maintain EE = 0 everywhere inside the metal.

(c) When the +¢ touches the inner surface, the induced —g is concentrated entirely at the
point of contact and cancels the +q. We are left only with the +¢ on the outer surface and
its associated E as given by equation (1).




MIT 8.02 Spring 2002 — Assignment #2 Solutions 3

Problem 2.2
Electric field and potential of a charged cylinder.

(a) E will be in the cylindrical radial direction because E mirrors the symmetry of the
charge distribution that generates it. To illustrate this, suppose you asserted that E had a
positive z-component at some point in space. Your recitation instructor would counter that
this could not be so, for E has no reason to prefer +2 more than —2: the (infinitely long)
charge distribution contains no feature that distinguishes 42 from —2. The same argument
would hold if you asserted that E had a positive azimuthal component. Therefore, E can
only be radial, since clearly there is radial structure in the charge distribution.
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(b) Based on the arguments presented in (a) and the fact that the magnitude of E may
only depend upon r, we assume E = E(r)# and first consider the case 0 < r < a. Take the
Gaussian surface shown at left in the diagram above. The total charge inside this cylinder
of height [ and radius r is its volume, 772, times the charge per unit volume, p. For the
“left-hand side” of Gauss’s law, we have

fB-dA = [E-dA+[B-dA

sides
= [0+ [ BE(r)da
ends sides

= E(r) | dA

sides

= E(r)2nrl . (2)
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Let’s spell out what is involved in equation (2). First, we may break the surface integral
up into two integrals: one over the ends and one over the sides. Everywhere on the ends,
the electric field is by assumption perpendicular to the normal to the Gaussian surface, and
thus E - dA = 0 there. So the original surface integral in fact contains only contributions
from the sides of the cylinder. On the sides of the cylinder, E = EF#, and # is the outward
normal to the Gaussian surface. So E - dA = E dA on the sides. Next, the assumption that
E depends only on r allows us to move E{r) outside of the integral over the side surface, for
r does not vary on the surface over which we are integrating. The remaining integral is just
the area of the side surface of the cylinder, or 2xrl. Thus, from Gauss’s law, we have

f E-dA = Qea/é

= 27rlE(r) = =prril/e
or r
E()=-L, 0<r<a . (3)
26[]

Now, for r > a, consider the Gaussian surface on the right. Everything proceeds as above,
except now the total charge inside the Gaussian surface is fixed at pwe?l, because our con-
tinuous charge distribution ends at r = @. Thus we now have

FE-dA = Qaafeo

= 27rlE(r) = = pra’l/e
a’p
— E(r) = e | >a . (4)

Using (3) and (4), we can plot what E(r) looks like:

QOO0 =

b~
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E(r) in units of
pa’2g,

0 1 2 3 4 5
r in units of a

Note that there is a “kink” in this curve at r = a, but no discontinuity; both forms for
E(r) give the same value at r = a. You will find discontinuities in E only when you have
point charges, line charges, or sheets of charge, not when you have continuous volume charge
distributions as in this case. Compare this curve to Figure 22-13 of Giancoli (p. 582) for a
sphere of charge. They are very similar, except that Giancoli’s solution for the sphere falls
off as 1/r? for r > ry, whereas we have E falling off as 1/r for {cylindrical) r > a. Our less
steep fall off for the cylinder occurs because in this case we have an infinite amount of charge
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(for an infinitely long cylinder), whereas for the sphere there is a finite amount of charge.
(¢) The potential difference between 0 and r is
‘
AV=-[E-d
0

(Note: this “dl” is no relation to the “I” that previously specified the height of our Gaussian
cylinder.) Here we have E = E(r) # and dl = #dr, so

av—- ["Bw)irar = - [(E@

For 0 < r < g, this is easy because we only have one functional form for E(r):

/" rp g L)

26[] 2 26[] 0
AV —_TP 0<r<a .
46[]

For r > a, we have to break our integral up into two parts because the expression for E
changes at r = a:

r a’pdr

AV — _f oo [raper

26[] a 26[] r

2 |& 2 r

S GO

2 26[] 0 26[] &

a’p
AV = —E(1+21n(7'/a)) r>a .

0

A plot of AV vs. r follows:
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Note that AV — —o0 as r = o0. Thus one cannot in this case normalize AV to be zero
at oo. This is because for an infinitely long cylinder there is an infinite amount of charge,
s0 that it takes an infinite amount of work to move a test charge in from r = co. Note also
that AV is everywhere negative. This is because AV represents the amount of work it takes
you per unit positive charge to move such a charge from 0 to r. Since the E field is always
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positive outward, you do negative work in this process: the field is pushing the test charge
outward (the direction in which you are moving it), and if you are holding onto it you can
get useful energy out of the ride. Thus you are doing “negative” work.

Problem 2.3
Electrostatic potential and potential energy. (Giancoli 23-66.)

(a) The coordinates of the cube’s center are (z,y,z) = (1/2,1/2,1/2). Thus the distance d
from the center of the cube to the point charge at the origin {(or to any other charge, since
all charges are equidistant from the cube’s center) is given by

d=/(1/2)? + (1/2)? + (1/2)% = ?z :

Electrostatic potential obeys the superposition principle, so the total potential at the center
of the cube is simply equal to 8 times the potential there due to any single charge. Taking
V = 0 at oo and making use of equation (23-6a) of Giancoli (p. 599), we have:

v s 1 16Q
center—47r60 d _4’}1'6[] \/§£ .

(b) At any given corner of the cube, there are 3 charges located a distance d; = [ away,
three charges a distance ds = V21 away, and one charge at the opposite corner, d; = V3l
away. Again invoking the superposition principle and taking V' = 0 at oo, we have

1 /3Q 3Q @\ 1 @ 3 1\ _ ... 1Q
m(d—ﬁd—ﬁa)—mf(“Tfﬁ)—<5'7)47reus |

(This does not include the contribution from the point charge located at the corner under
consideration. If this point charge had zero size, its contribution to the potential right at
the corner would be infinite!)

Vcorner -

(c) (Also see Giancoli Section 23-8 for a discussion of the electrostatic potential energy of a
configuration of charges.)

The electrostatic potential energy of any collection of point charges is equal to the work we
would need to do to assemble the collection if all the charges were initially infinitely far apart
from one another. Bringing the first charge into place requires no work. Bringing in the
second, we do work Wia, resulting from the force of 1 on 2 as we move 2 into place. Bringing
in the third charge, we do work Wi3 4+ Wha3, as 3 experiences a force from both 1 and 2.
Bringing in the fourth charge costs us Wy + Ws, + W3y, and so on until the configuration is
assembled. From this pattern, we can see that the total electrostatic potential energy of a
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collection of point charges will be a sum of many terms, one ferm for each possible pairing
of charges in the system:

Uistal = Wi+ Wiz +Waz + W+ Wa + Way +- -+

We know how to express these W's in terms of charges and charge separations. Consider
the pairing of charge ¢ with charge j, separated by a distance dj;:
1 QiQy

ij —
J 4’}1'6[] d.g‘

Note that although we have imagined constructing the system in a particular charge-by-
charge order, the result for the potential energy of the configuration depends only on the
final configuration and not on the order in which the charges were brought into place.

For our cube, the quantity QQVeormer gives the sum of the potential energy terms for 7 pairings
in all: all of those pairings that involve one particular charge. The quantity 8Q)Veormer thus
adds up the total potential energy of the configuration, but counts all pairs {wice (convince
yourself!) The correct value for the total potential energy of the cubic configuration is then

1 &

Uiotal = 4Q‘é:m‘rler = (228) dreg |

Problem 2.4

Electric field, potential, and electrostatic potential energy.

From equation (23-6a) of Giancoli (p. 599), we have at any position r the electrostatic
potential as

V(r) — 1 ( Ql Q2 Q3 )
dreg \[r1—1x|  |ra—1r| |ry—r|
o 106 5 1 2
Vir) = - + ST units).
(r) d7reg (|r1—r| lrg — 1| |r3—r|) ( )

(Here, r, r1, etc. are position vectors, and thus |r1 — r| and the like are magnitudes of vector
differences.)

AtP]_:
1‘1—1‘P1|:|1'3—1'P1|:1m= |1'2—1'P1|:\/§m
=V = 5.7 x 10* Volts.
AtPg!
= [r2 = oy = | =
ry—rp, =|Fp—rp,| = |F3—Tp,| = —F—= I
1 P2 2 Po 3 Py \/§

=V = 7.6 x 10* Volts.
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At P3:

ri—rpy| =3m, [rp—rp|=2m, [r;—rp =+v5m

=V = 1.86 x 10* Volts.

(b) Our expression for V is the sum of three terms, two positive and one negative. One
can see that if we get close enough to the negative charge (Q2), the negative term can be
large enough to cancel the two positive terms. Thus there exists some “egg-shaped” surface
surrounding (s where the potential is zero (see sketch below).

(¢) There are two points where E is zero, as shown in the sketch below. One is “sort of”
between the two positive charges, where the two fields balance out (this is modified by the
presence of the negative charge). The other is to the upper right of the negative charge, and
is where the repulsion of the two positive charges is just balanced by the attraction of the
negative charge (for a positive test charge).

(d) See sketch of field lines below. The ratio of the number of field lines for the three charges
is 5:2:1 in 3-D space. The sketch is 2-dimensional; it is only meant to be illustrative.

(e) The electrostatic potential energy of the system is (see Section 23-8 of Giancoli)
1
( Q1Q2 N Q@203 N Q3G )

4’}1'6[] |l‘1—l‘g| |1‘2—1‘3| |l‘3—1‘1|
10712 5 2 10

= — |- = - [ I i
T ( 71T \/5) (ST units)

= +6.4 x 107 joules.

U

(f) The energy above is the amount of energy it takes to bring the three charges in from
infinity to their locations as shown. If we could release these charges in such a way that
they all flew off to oo, all infinitely far away from each other, then the energy U/ > 0 above
would be converted to an equal amount of kinetic energy of the three charges at infinity.
However, because one of the charges is negative, the charges will not all fly off to co when
released, and the amount of kinetic energy they gain upon release can vary enormously.
For example, suppose you release ¢J5 first. It will start to move in the direction of the net
E-field due to the other two charges. So it will take off in the direction a little South of
due East. What happens thereafter is impossible to evaluate based solely upon the given
information. It is guite possible that (5 will make it all the way out to oo, but we cannot
exclude the possibility that it will end up on J5. The trajectory of (J3 will not only depend
on the E-field configuration due to the other two charges, but also on (J3’s mass. Different
masses will experience different accelerations and will therefore have different trajectories.
If the mass of ()5 were immensely large, (J5 would closely follow the field line going through
its point of origin. However, if its mass were small, it would immediately leave that field line.

Now release ()2 (suppose that @3 has in fact flown off to co). This charge will be attracted
to @1 and will smash directly into it. If these were truly point charges, the kinetic energy of
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()2 would become infinite as |r; — ra| — 0.

In contrast, if you release ¢Js first, it will become bound to ¢, performing a complicated
orbit about @J;. If Q)5 is released at the right time in the orbit of ¢J; about ¢};, (J5 might fly
off to oo, leaving ¢J1 and ¢J; to orbit one another. Thus this question has an infinite number
of answers—all greater than zero—but is otherwise ill-defined.

V = 0 on dashed surface

|E|:00n®’s /
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Problem 2.5
Electric potential of flat ring with hole in its center. (Giancoli 23-78.)

This problem is very similar to
Giancoli Example 23-9 (p. 599).
Taking ¥ = 0 to be in the plane
of the disk, we proceed by divid-
ing up the disk (with hole) into
many infinitesimally thin rings of
charge and adding up the contribu-
tion of all rings to the potential on
the symmetry axis (see diagram at
right).

X
A

The disk carries a charge @ and has surface area 7R? — 7{R/2)* = 3wR?/4, so its surface
charge density is ¢ = 4Q)/37R>. A single infinitesimal ring of radius r and thickness dr (see
diagram) has area 277 dr and thus carries a charge dg = (4Q/37R?)(2xr dr) = 8Qr dr/3R%.
All of the charge of this ring is at a distance v/2? + r2 from a given point on the x-axis, and
thus the contribution of the ring to the potential at that point is

1 dg 1 8Q rdr
Ameg /22 + 72 Ameg 3R/ + 72

To find the total potential, we integrate this expression over the entire disk, from r = R/2
tor=R:

dV =

1 8Q f& rdr
V_fdv - 4?1'6[]@ R/2 /22 + 2
1 8Q [VEERE

= after substitution v = vVx2 + r2.
47reu 3R? /. /s 2+R2,f4 ( )

=Vie) = 3'.fre[]R2 (\/W \/m)
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Problem 2.6
Flectric breakdown fields.

(a) Let @ be the radius of our sphere. We know from our previous dealings with charged
conducting spheres that just outside the surface the electric field is given by

Q
E —= —=
(r=a) dega?
and the potential (relative to co) at its surface is
Q
V = =
(r=a) 47ega

From these two equations, we easily deduce the relation between £ and V at r = a to be

E(r:a):@

For a fixed voltage of —4000 V, E on the surface becomes larger and larger as a becomes
smaller and smaller. For E to have a magnitude less than 3 x 10° V/m, we need

4000
— =1. 103
3% 10° 33x107° m

= ¢ > 1.33 mm for no breakdown.

(b) From above, @ = 4wegaV, or for our numbers, @ = —6 x 107'% Coulomb.

(c) An electron in the air just outside the sphere will be accelerated radially away from
the sphere by the electric field. If it were moving in a constant electric field of magnitude
3 x 10° V/m, it would pick up an energy of 10 eV in a distance { satisfying

e(3 x 10% = (10)e .

This equation is simply force (¢E) times distance is equal to energy, where we have used the
fact that 1 eV (in Joules) is the charge of an electron (in Coulombs) times 1 Volt. Solving
the above equation for { gives

10

— — —6
l= 5 g =33%10°m .

Now in fact the E field is not constant outside the sphere: it falls off as 1/72, of course. But
in 3.3 x 107% m it falls off only a very tiny amount, so that the assumption of a constant
field over the distance { is a very good one.

(d) We may conclude from the result of part {c) that an electron can gain 10 eV within
three mean free paths or so, if one mean free path is 107% m.
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We can understand “breakdown” as follows. The energy required to ionize an air molecule
is~10eV. If £« 3 x 10° V/m, a “stray” electron in the air will pick up energy between
collisions, but not enough to ionize an air molecule when it collides. If £ > 3 x 10° V/m,
the “stray” electron will pick up enough energy to ionize an air molecule. This gives us two
free electrons which will then become 4, and then 8, etc. This cascade, or chain reaction,
will eventually reach macroscopic scales as a spark, and the sphere will partially discharge
through the air.

Problem 2.7
5.2 keV protons. (Giancoli 23-72.)

(a) Denote the electric field acting upon the particles by E(r). The force exerted on the
proton at any position r will be eE(r) (here, e > 0 is the magnitude of the electron or proton
charge). The energy acquired by the proton during its trip from P to Q is thus

(KE), = erE(r) dl=52keV .

P

The force on the electron at any given r will be —eE(r), and hence the energy it would gain
in traveling from Q to P is

(KE), = fQ " [—eE(r)] - dl = [P * [—eB()] - (=dl) — [ * eE(r) - dl .

P

So we see that
(KE), = (KE), =52 keV .

(b) We can find the ratio of particle speeds from

(KE), mgv./2
(KE), B mp”gfz

Ve My 1.67 x 10~
v\ e 9.11 x 10-3 3

1=
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&

Problem 2.8
Dropping charged objects in the Earth’'s
electric field. {Giancoli 23-74.)

We'll take the z-direction to be vertically
upward, with the ground at z = 0 (see dia-
gram). The gravitational potential energy
of either ball is then

Ugran(2) = mygz

(taking Uymy =0 at z = 0).

From the given electric field we may construct an electric potential V{(z) = Ez, where
E =150 V/m {we take V = 0 at z = 0). The electrostatic potential energies of the two balls
are then given by

Uetee,1(7) = @Bz and  Ugeo2(2) = g2 B2

Conservation of energy {mechanical gnd electrostatic) from the initial state at z = h = 2.00 m
to the final state at z = 0 for the two balls gives

mvi/2 = mgh+qEh
mva/2 = mgh+@Eh |

which solves to

P = \/29h+2q1Eh/m
vy = +/2gh+2gEh/m .

For the numbers given in this problem, we have

11 = v39.24+0.61 m/s
v2 = +/39.24 -061m/s ,
giving
Av=v; —13=0.097 m/s = 9.7 cm/s .
It is appropriate that »; > v, because the electric field will force the positively charged first

ball downward, along with gravity, while forcing the negatively charged second ball upward,
opposing gravity.

END



