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MIT 8.02 Spring 2002
Assignment #11 Solutions

Problem 11.1
Single slit diffraction. (Giancoli 36-9.)

(a) If you double the width of a single slit, you will double the electric field wave amplitude
Ey at the center of the screen. Since light intensity at the center of the screen I is propor-
tional to Ej, I, will increase by a factor of 4.

(b) Energy conservation is not violated because the intensity becomes more sharply peaked
around 6 = 0. For example, notice that the angular position of the first minimum (given
by sin 8 = A/a) will be reduced when the slit width a is doubled (keeping wavelength A fixed).

The following plot of I, vs. @ illustrates the situation, with a = A — a = 2A. For each
curve, the total power transmitted is proportional to the area under the curve. One can see
that although the a = 2\ curve has a peak four times higher than the a = A curve, the
area underneath is more like twice the area under the a = A curve, in agreement with the
expectation of energy conservation.
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Problem 11.2
Gratings — Physics and candle light — Home experiment II.

(a) The slit separation is the inverse of the number of lines per millimeter:

1

=——  =10%m=10,000A .
1000 mm—!

(b) The angular positions of the maxima from a diffraction grating are given by Giancoli
Equation (36-13) (p. 900):

) mA

sinff = — .

d
The first-order (m = 1) positions for red light and blue light are

6,300
10,000

4,500
> =39.1°, 0 pwe = arcsin ( ’ > =26.7° |

61 rea = arcsin ( 10,000

and the angle between first-order red and blue lines is

AO1 red—blue = 1 red — O1plue = 12.3° .

(c) sinf cannot exceed 1, so for any given wavelength A\ and line spacing d, the highest
possible order m is the greatest integer such that mA/d is still less than or equal to 1.
mA/d < 1= m < d/\, thus for red and blue light we find

10,000
red — : ~ 1. max, red = 1
d/)\ ed 6,300 6 = Mma ,red
10,000
d/)\blue = 4500 ~22 = Mmax, blue = 2 .

(d) The zero-order spectrum is white; it contains all colors, unseparated in angle.

(e) Observing candlelight in a dark room, I can see the first-order maxima in red and blue
quite easily. I can also make out the second-order blue maximum (although it is much
fainter). This agrees with the prediction of (c).

(f) For £ = 24 inches, I find L = 34} inches, giving tanf = ¢/L = 0.70 = 6 = 35° for the
position of the first-order red maximum: not exactly 39°, but fairly close. What I've judged
as “red” is probably more “orange” than 6,300-A light.
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(g) Here we must consider two apparently distinct cases. Suppose we are observing the
higher-order maxima that appear to the right of the light source. In case (i), we rotate the
grating by an angle ¢/ about the vertical by moving the left side of the grating towards the
source and the right side away from the source. In case (ii) we move the left side away from
the source and the right side towards the source. We take 8 to be the angle between the
light source (i.e. the zero-order maximum) and the higher-order maxima: this is the angle
that we observe most directly. Let us also define ¢ to be the angle of the diffracted rays with
respect to the grating. Let d be the slit spacing. The situation is shown in the following
diagram:

case (1): light source side case (1i):

observer side

First consider case (i). With respect to the ray on the left, the ray on the right has an
additional pathlength dsin on the source side of the grating and another additional path-
length dsin¢ on the observer side. The condition for constructive interference (and thus
the appearance of a maximum) is therefore dsin ¢ + dsiny = mA. Next consider case (ii).
Now the left-hand ray has an additional pathlength dsini on the source side, while the
right-hand ray still has an additional pathlength dsin ¢ on the observer side. The condition
for the appearance of a maximum is now dsin ¢ — dsiny = mA.

From the geometry, we deduce that § = ¢ + v in case (i) and 6 = ¢ — ¢ in case (ii). The
constructive interference criteria for cases (i) and (ii) can then be re-expressed as

sin(f — ) +siny = mA for case (i),

sin(f + ) —siny =

d
mT)\ for case (ii).
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If we (somewhat arbitrarily) take case (i) to correspond to positive ¢ values and case (ii)
to correspond to negative 1 values, both conditions take the form of the case (i) condition,
which solves to

f = arcsin (mT)\ — sin¢> 4+ .

Let’s now take some numerical values for our grating: m =1, A = 5,000 A, and d = 10,000 A,
giving mA/d = 0.5. If we plot 8 as a function of ¢ (shown below), we see that 6 in fact
slightly decreases at first when we increase 1 from zero, then begins increasing again. 6
increases immediately when we go towards negative v values from 3 = 0. Also note that
there is a singularity at ¢» = —30°, beyond which the argument of the inverse-sine function
exceeds 1 and the first-order maximum is no longer present.

Effect of grating rotation about vertical for lambda/d =0.5
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Problem 11.3

Diffraction, interference, and angular resolution of 2-element interferometers.

(a) Giancoli Equation (36-10) (p. 897) gives the angular resolution of a single radio telescope
of diameter 100 ft = 3048 cm at a wavelength of 21 cm:

_ 122\ (1.22)21

= =84 x 10"%rad = 0.48° ~ 1 :
D 2043 84 x 107 rad = 0.48 700 arcsec

Z
(1° = 3600 arcsec.)

(b) To determine the angular resolution of the pair of telescopes operating as an interfer-
ometer, we make an analogy to the double-slit experiment. The angular resolution will be
set by the position of the first minimum in the diffraction/interference pattern described
by Giancoli Equation (36-9) (p. 894). Since the effective “slit separation” of d = 1km is
much greater than the effective “slit width” of 100 ft, this first minimum will occur when the
cos®(6/2) factor first goes to zero:

o A 0.21

7r T, . .
i—g—xdst = s1n9_ﬁ_(2>1000

=1.05x 107* .

sin # = 6§ for such small angles, thus we have
0 =1.05x 10 rad = (6.0 x 107%)° = 22 arcsec

for the angular resolution—a big improvement.

Problem 11.4

Destructive interference of sound. (Giancoli 36-55.)

We can idealize this as a single-slit diffraction problem with sound waves instead of light
waves. Our slit width is ¢ = 0.88m and the wave frequency is f = 750Hz. We'll take
v = 344m/s for the speed of sound in air. The whistle will not be heard clearly at the
angular position(s) of minima in the diffraction pattern (Giancoli Equation (36-2), p. 889):

A v (344)

sinf=m—=m—-—=m

e~ "7a = "0sg)(ma0) ~ 05Im -

The only non-zero integer m that yields a solution is m = 1 (for sinf < 1 necessarily). So
in an ideal situation, the whistle would go unheard at

6 = arcsin(0.52) = 31° .
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Problem 11.5
Resolving power of the human eye. (Giancoli 36-65.)

The diffraction-limit angular resolution of the human eye (assumed diameter 5.0mm) at a
wavelength of 500 nm is

_ 1223 (1.22)(5x 1077)

b="p = (5.0 x 103)

=1.22 x 107*rad = 0.42arcmin ~ (1° = 60 arcmin).

(a) Considering only diffraction effects, the human eye will be able just barely to distinguish
two car headlights when they are at a distance L such that their separation d subtends an
angle 0 equal to the above angular resolution limit:

d 2.0m
(small angle:) d=L§ = L= 2= 199 % 101 = 16km .
(b) Again considering only diffraction effects, the minimum angular star separation that the
human eye could discern would be the above 0.42-arcminute value. The eye’s actual angular
resolution is more like 1 arcminute due to the finite density of photoreceptors in the retina.
In fact, as demonstrated in lectures, most students were not even able to resolve two lights
of equal strength which were 1 arc-minute apart.

Problem 11.6

Resolving power of optical telescopes.

@ _ 1220 (1.22)(45x 1077)

D 2.4

(b) As discussed in lectures and also noted in Giancoli Example 36-5 (p. 897), the angular
resolution of ground-based telescopes is limited to about 1 arcsecond (at best) by turbulence
in the Earth’s atmosphere.

7 =2.3x 107" rad = 0.047 arcsec .

(c) As mentioned in lectures (see also Giancoli Example 36-5), the angular resolution of the
Hubble Space Telescope is limited not by atmospheric effects but by diffraction. Therefore,
for a wavelength of 4.5 x 10~7 m, it has the 0.047-arcsecond resolution of part (a).

(d) (See preceding parts.)
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Problem 11.7
Doppler shift of light I. (Giancoli 37-56.)

The Doppler-shift formula for receding sources (Giancoli Equation (37-15b), p. 943) can be
solved algebraically for the relative velocity of recession:

c—v [1_(f/f°>2]c '

1+ (f/fo)?
We are given that fo — f = 0.797fy = f/fo =0.203. So then,

= ——= =
f=1o c+v v

_ [1 — (0.203)?

m] c=0.921c =2.76 X 108 m/s .

Problem 11.8
Doppler shift of light II. (Giancoli 37-59.)

If v < ¢, then v/c < 1. Working to first-order accuracy in v/c and making use of Giancoli
Equation (37-15a) (p. 943):
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