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MIT 8.02 Spring 2002
Assignment #1 Solutions

Problem 1.1

Relative strengths of gravitational and electrostatic forces.
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The dust grains have diameter 50 pm, and thus have a radius ¢ = 25 ym = 2.5 x 107° m.

They have mass density p = 2.5 gm/cm® = 2.5 x 10® kg/m? and charge @) = —ne (e being
the magnitude of the electron’s charge). The mass of each grain is then

4
m=-7a’p21.6x 10" kg .

3
The gravitational attraction is
G'm?
Fo = 2
The electrostatic repulsion is
2.2
_ n'e
¢ dred®

There would be no net force if Fo = Fg, Le.

n= 47reu(}'? ~2009<1 .
Thus a mere single extra electron on each grain would prevent the grains from colliding.
For comparison, each grain contains m/m, = (1.6 x 10719)/(1.67 x 1072") 22 10'7 nucleons
(protons + neutrons). For a neutral grain, we have one electron for each proton, or one

for every two nucleons, if # protons = # neutrons. Thus the total number of electrons is
~ 5 x 106,
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Problem 1.2
FElectric field along the line passing through two point charges.

(Note: In these solutions, as in the text, we will always denote vector quantities such as the
eleciric field by boldface foni: E. In lectures, and probably in your own handwritien work,
vectors are more commonly written with an arrow over the fop: E.)

QF +3uC Q= -7pcC
— . x
0 0.4m

(a) Let us first determine the electric field due to @, alone. From the expression for the
electric field due to a point charge,

1 G
— 7 .

E]_ —
ey 12

If we are at position x on the x-axis, r = &, r = V&2 = |z|, and # = r/|r| = (x/|z|)#, and

@ Lij\;
dreg 2|2 ||
G 7

dreg |a:|3x '

E]_:

Note that E; is in the & direction for x > 0 and in the —& direction for z < 0, as we would
expect, since the charge is located at # = 0. Similarly,

. Qg z—04 &
 dwey |z — 0.4)3

E,

{variables always measured in SI units unless otherwise noted). Note that E, changes direc-
tion depending on whether we are to the left or right of the charge at x = 0.4 m. The total
E is the sum of E; and E3:

1070 [ » z—04 5
Cdmey | |wPP |z —043|7

E

This expression is good for —oo < x < 00, but it is worthwhile writing it out as follows:

10-8 (=3/x>+7/(x—04)))% —co<x <0
E= T (+3/x2+T7/(x —04))% 0<zx <04
TO N (+3/2>=T/(z—04))) % 0d<z <00 .

Note the sign changes as one passes over the positions of the two charges and the field due
to that charge reverses.



MIT 8.02 Spring 2002 — Assignment #1 Solutions 3

]

(b) For z < 0, 1 —
- §]
108 \
E{zx)=3-—
(z) ¥ ireo =) -1 \
where @ 2 ‘
3 7 3
R
-
(See graph at right.) 5
-6
6 5 4 3 2 1 0
x (meters)
This function has a zero at x = —0.758 m, and a maximum at x = —1.225 m, with a value
there of 0.652 m~2. As we move toward z = 0, f{z) blows up to —oo, because of the positive
charge at z = 0. As we move toward x = —oo, f{z) goes asymptotically to +4/x2, which

simply means that far enough away (|x| > 0.4) the field looks like that due to a point charge
of charge ¢J1 + (2 = —4 pC.

(c) There are no other zeros of E{x) except at x = —0.758 m. A glance at our expression
for E(x) above clearly shows that there can be no zeros in the range 0 < x < 0.4 (sum of
two positive terms can never be zero). You might think that we could get a zero in the
range 0.4 < x < 00, but the negative charge (which is of greater magnitude than the positive
charge) is closer throughout this range, and the electric field is therefore always in the —&
direction. Solving for the zeros of the expression for E(z) in the 0.4 < & < oo range will
give zeros that are outside of that range and therefore unphysical.
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Problem 1.3
Continuous charge distribution. {Giancoli 21-49.)

y

dE

We first find the electric field dE at point O from a portion of the arc of length di and
located as shown in the diagram. This little element carries charge dg = Adl. If di subtends
an angle dff (see diagram), then we have di = Rdf. Now,

dq
dE = 7"
imegR2
where 7 is a unit vector pointing from the little element towards O. If the little piece of
arc is located at an angular position € as shown in the diagram, then # = —Zcosf — §sin 6.
Thus,
A
dE = —Zcosf df — §sinf df
dreg R [ Y )

To get the total E, we integrate dE from # = —@ to § = 6, noting that
8 s
f cos@df =sinb|’, = 2sinby ;
b 0
o s
f sinffdf = —cosf|? =0 .
_90
Thus )
:f;)\ sin &y
2meg R
(The astute problem solver would have concluded from the outset, based on the symmetry

of the system, that E at O could not conceivably have any y-component, and would only
have bothered to calculate E, explicitly.)

E=-
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Problem 1.4
E-field of a uniformly charged disk.

T This problem requires an expression for the electric
field on the axis of a ring of radius r carrying a charge
g (see Giancoli Example 21-9):

z 1

qz 3
Ermg

dreg (247 )3,’2

N q

dE
The problem at hand is a disk, not aring,
but we may break the disk up into many
rings and add up the field due to each, 2
using the above expression for E.,e. The
area of the shaded region in the diagram
at right is 277 dr, and thus its charge is
o(27r dr) = (Q/wR%)(2xr dr). Using our
expression above, the electric field dE due
to the shaded area is

1 dg z Q= rdr
dmeg (22 + 7‘2)3f’2 N 27reuR2 (2% +r2)3/2

dE = 2

(a)

R rdr Q= —1 :
E= =2
fd 2?T6[]R2 f (2% + r2)3/2  ore R [(z2 + 7‘2)”2] 0

. @z 1 1
E =5_% |- ____ -
(z) z2ﬂ'eUR2 lz| 22+ R2
(The integral above is easily done using the substitution s = /22 + r2, whereby rdr = sds.
This leaves us with the simple integral [ s~ ds.)

(b) For z > 0, we can write this as

E(z)
(Q/4men R?

We use this expression for the plot on the following page.
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(¢) We can understand the shape of this curve for small and large z by using a Taylor series
expansion. From Giancoli Appendix A-3,

£ = fa)+ | (=) 4+

dua

Let’s expand (1 + »)® about u = 0 using this formalism. First,
i(1 + u)® =n(l + u)*"
du ’

50 that

(l+u)" = (I+u)oy+nl+u™| _ (w=0)+-
I+nu+---

This is the binomial expansion of Giancoli Appendix A-2. It is a good approximation as
long as u is < 1. For case (i), 2> < R?, we have

Q

5 z/R
2weg B2

I+ /Ry

E(z) =

but (1 + (z/R)?)~'/2 ~ 1 — (1/2){z/R)? from above, so

e 1= G/R) (1= 1/26/RY)]

E(z)

>

E(z)

2 2 .
= m; z° € R (leadmg term only_)
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Note if we had kept the next term, we would have an initial slope of —2 near z = 0, in
keeping with our plot above. For case (ii), 22 > R?, we have

1
(R/z)2+1

o~ Q
E —
(2) =2 27eg 2

but (1 + (R/2)%)"12 ~ 1 — (1/2)(R/z)? for (R/z)? < 1, and

E(z) ~ 22?_:# [1= (1= (1/2)(R/2)%)]
E(z) ~ 2%:—2, 2> R

(d) Clearly the above case (ii) expression looks like Coulomb’s law for a point charge Q.

(e) If we are very close to the disk {z <« R), it looks like an infinite plane with surface charge
density ¢. The field due to an infinite plane has the same magnitude above and below the
plane, but with opposite directions (see diagram below). Applying Gauss’s law to the pillbox
shown below, we have

FE-dA = Quafe
EA+EA = cAley — E=0/2¢ .

(We grudgingly adopt the convenient but somewhat abstract notation dA, to be consistent
with Giancoli. We would prefer to use the more intuitive notation fdS.)

Since ¢ = Q/wR?, this expression is exactly as in c(i) above.

E JA area A
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Problem 1.5
Electric Dipole. (Giancoli 21-65.)

-0 | +Q
——
=12 12 r

Let the charges be located on the z-axis, with the positive charge (+@Q) at x = [/2 and the
negative charge (—@) at x = —I/2, as shown in the diagram above. From the expression for
the electric field due to a point charge, the electric field on the x-axis at = r (> 0) due to
the positive charge is

1 (+Q)

 dmey (T — 5/2)23:
and the electric field there due to the negative charge is

1 (-Q
T Awey (r +1/2)?

E,

E

The total electric field is

Q@ 1 1 R
E—E,+E_ — _
e T rer? (L= 120 T (12

Since {/2r <« 1, we may to a good approximation expand the two terms in square brackets
using the binomial series expansion (as in the previous problem), and retain only the first-
order term in /27

(1£i/2r)? ~1Flfr (forl/2r<1) .

This gives us

. @

T Admeyr?

2Q1 5 2p N
dmegrd”  dmeyr3

[(1+1/r)—(1=1/r)]&=

The magnitude checks out with the problem statement. E points in the positive x-direction,
as we would expect, since the positive charge is a bit closer than the negative. Notice that
the net E-field is proportional to 1/r3 whereas the E-field due to each charge separately falls
off as 1/r%
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Problem 1.6

(GGauss’s law and the superposition principle.

Let’s choose the z-axis perpendicular to the slab and sheet, with z = 0 in the middle of the
sheet:

=
4

@ \&\ G (negative)
T W e
(

We will find different expressions for E in each of the three regions shown:

RegionI : z > D/2
Region I : —D/2<z< D/2
Region III : z < —-D/2 .
The best way to approach this problem is to make use of the superposition principle and
symmetry arguments, i.e., to calculate the electric field Egee of the sheet of charge alone,

then to calculate the electric field Eg,y of the slab of charge alone, and then to add vectorially
the results. From above, we have

Region I : Egyee; = +2i2 (independent of z)

€p
Region 11 & 111 : By = ——3 .
26[]
What about Eg,,? Consider the fol- area A E dA
lowing Gaussian pillbox: the top is a
distance z > D/2 above the z = 0 R
plane, and the bottom is the same T
distance below the z = 0 plane. By 7D

symmetry, the electric field on the
top of the pillbox has exactly the
same magnitude, but is oppositely di-
rected from the E field on the bottom
of the pillbox. The charge ¢} enclosed
by the pillbox is pD A, s0 [

$ B dA = Qua/ey
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becomes 2EA = pDA/ey, or E = pD/2¢q, independent of z.

area A E

That gives us the field outside the
slab, but what about inside? Con-
sider a pillbox similar to the previ-
ous, except now z < D/2. The total
height of this pillbox is 2z, so that
the charge contained inside is now

p(2z) A, and E Yia

56 E-dA = Qua/es = 2EA=22pA/e; .
Notice that again we used a symmetry argument by carefully choosing the pillbox to have
top and bottom the same distance from z = 0. Thus inside the slab, E = pz/ey. This

depends on z, as it should!

For the slab, then,

D
Region I : Ega = +'o—z

26[]
Region 11 : Eggp = +222

€0

D
Region Il : By = —~—2 .

26[]

In summary, we have
(a) RegionI (x> D/2) : E=
(¢) Region Il (—D/2<z<D/2) : E= [% — i] 2

(b) Region 1l (z < —DJ2) : E——#P*9)
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(d) It is instructive to plot Egee and Egy, separately (remembering that o < 0).

|
|G|f280 : (Eshcct z
_DI 0 ¢
| -1G1/2¢,
|
(Es]ab z: Di2e
_D / p (4]
| ! -
T r 4 0: il
—pD/2¢, i
Together, they look like this (assuming pD > |o|):
£,
D /I (pD+0)/2¢,
7 0' z

Note that the field across this and any sheet of charge is discontinuous, with a jump of
magnitude /€.

Problem 1.7
Two spherical charged shells. {Giancoli 22-21.)

From the symmetry of the system, we may con-
clude that the electric field is entirely in the
radial direction, and is a function of 7 alone.
We take as a Gaussian surface a spherical shell
concentric with the charged shells, and with
radius 7 in the region within which we wish to
determine the electric field. Gauss’s law gives

FE-dA = Qua/ea

:>4?TT‘2E = Qencl/ﬁ[} .
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(a) In the region where r < 71, Qeng = 0, and thus E = 0 there.

(b) In the region where r1 < r < r3, Qe = 477201, 50 there

2
gL T ~

E:—(—) F .
€p T

(¢) In the region where r > ra, Qena = 4w (7301 + 7303), giving

E_ (rZc, + r30s) R
€or2

(d) We will have E = 0 for r > ry if rfo; = —r30s. This amounts to having equal and
opposite charges on the two shells.

(e) E=0for r1 < r < ry is only possible if o1 = 0, regardless of the value of os.

Problem 1.8
Two concentric charged cylinders. (Giancoli 22-29.)

For I. >» R, K2, we may model the system as be-
ing of infinite length to a good approximation. We
then conclude from the symmetry of the system that
the electric field is directed radially outward, perpen-
dicular to the axis of the cylinders, and is a function
only of the perpendicular distance r from the axis. To
apply Gauss’s law, we consider a cylindrical surface
coaxial with the charged shells and of length & < L,
with radius r in the region in which we wish to de-
termine the electric field (see diagram at right). E is
{(approximately) perpendicular to the endcaps, so the
only contribution to the flux integral comes from the
sides of the Gaussian cylinder. Gauss’s law gives

56 E - dA = Qena /e => 27ThE = Qeaar/ey -
(a) For r < Ry, Qena = 0 and we conclude that E = 0 in this region.

(b) For R1 < r < Rz, we have Qena = +Qh/L, and Gauss’s law gives us

Q@ .
E —
(T) Z?TEULT‘T
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for this region. (Note that the meaning of # differs between this problem and the previous
problem: here it is intended to indicate the direction perpendicularly away from the cylin-
ders’ axis)

(¢) For r > Rs, Qena = (+@Q — Q)h/L =0, giving E = 0.

(d) The electron will experience an inwardly-directed electrostatic force with magnitude
given by
e
wegL{ Ry + Rs)

This force will provide the centripetal acceleration for the maintenance of the circular orbit,
so that

F=¢elF =

MeV>
(R1+ Ry)/2
Equating these two expressions for F' and recalling that kinetic energy is given by (KE) =
mv? /2, we obtain
eQ
(KE)e =

" dweL

F=my.=

END



