Physics - 8.02

Assignment #3

February 22, 2002.

We strongly recommend that you read about a topic before it is covered in lectures.

Lecture Date	Topics Covered	Reading from Giancoli
#9 Mon 2/25	Currents - Resistivity - Ohm's Law	Chapter 25 through Sect. 25-4
#10 Wed 2/27	Batteries - EMF - Energy Conservation - Power Kirchhoff's Rules - Circuits Kelvin Water Dropper	Sect. 25-5 through 25-8 Chapter 26 through Sect. 26-3 (take notes in lecture)
#11 Fri 3/1	Magnetic field - Lorentz force - Torques Electric Motors (DC) Cathode Ray Tube, Oscilloscope	Chapter 27 through Sect. 27-7 Sect. 23-9

Due before 4 PM Friday, March 1 in 4-339B.

Problem 3.1

Capacitors in series and parallel. Giancoli 24-23.

Problem 3.2

Switching Capacitors.

In the diagram below, the four capacitors have the same capacitance; the battery provides 120 V.

Consider two cases, starting in both cases with uncharged capacitors.

Case I.

- (a) While switch B is kept open, switch A is closed and then opened after C_1 , C_2 , and C_3 are fully charged. What is now the electric potential difference across each capacitor?
- (b) Subsequently switch B is closed. What is now the electric potential difference across each capacitor?

Case II.

- (c) Switch A is open. Switch B is first closed. What is now the electric potential difference across each capacitor?
- (d) Subsequently switch A is closed. What now is the potential difference across each capacitor?

Problem 3.3.

The effect of a dielectric medium on the capacitance. Giancoli 24-60.

Problem 3.4

Comparing cylindrical and spherical capacitors.

- (a) Compare the capacitance of a capacitor of 2 concentric spheres with $R_1 = 6$ cm and $R_2 = 9$ cm, with that of a cylindrical capacitor having the same radii and axial length of 15 cm. Why are the capacitance values nearly equal?
- (b) Show that, when R_1 and R_2 are nearly equal $(R_2 = R_1 + \delta; \delta << R_1)$ the formulas for the spherical and cylindrical capacitors may be approximated by the formula for the parallel-plate capacitor, $C = \varepsilon_0 A/d$ (eq. 24-2). Hint: make use of Taylor's expansion in terms of δ/R_1 .

Problem 3.5

The Van de Graaff

The spherical dome of a Van de Graaff electrostatic generator has a radius of R m. A rubberized belt 50 cm wide travels at a velocity of 30 m/sec. The belt is given a surface charge density which produces a field of approximately 10^6 V/m on each side of the belt. (see Figure 23-37 on page 612).

- (a) What is the current carried by the belt?
- (b) What is the maximum charge that the spherical dome can hold, and how long will it take to reach this value?
- (c) What is the maximum electrostatic potential of the spherical dome?
- (d) What are your answers under (b) and (c) for R = 0.15 and R = 0.5 m?

Problem 3.6

Resistor Circuit.

Giancoli 26-25

Problem 3.7

Resistor Network.

A circuit consists of 5 resistors and 3 batteries (see diagram); the connecting wires have all a negligible resistance. The values for R_1 , R_2 , R_3 , R_4 , and R_5 are $10\,\Omega$, $30\,\Omega$, $50\,\Omega$, $70\,\Omega$, and $100\,\Omega$, respectively. The batteries have a negligible internal resistance; their voltages V_1 , V_2 , and V_3 , are $12\,V$, $24\,V$, and $36\,V$, respectively (for their polarities, see the diagram).

- (a) Calculate the current (magnitude and direction) of the currents through each of the 5 resistors.
- (b) What is the potential difference (observe signs!) between the points A&P, P&N, and G&D.

Problem 3.8

Wire resistance.

Giancoli 25-52.

Problem 3.9

Energy consumption of heater. Giancoli 25-61.

Problem 3.10

Electric car. Giancoli 25-72.

Recitations.

There are 28 recitation sections (see the 8.02 Website). If for any reason you want to change section, please see Maria Springer in 4-352.