Solutions for 8.01x Problem Set 6

11-17: In this problem, we are again dealing with a system in static equilibrium. There are three unknowns, the tension T_L in the left rope, the tension T_R in the right rope and the angle β between the right rope and the bar. To find these unknowns, we require that $\sum \vec{F} = 0$ and $\sum \vec{\tau} = 0$. For the torque, we pick the right end of the bar as the pivot point, such that two of the unknowns $(T_R \text{ and } \beta)$ don't appear in the first equation. We count counter-clockwise torques as positive. For the overall torque to vanish, we require

$$3.0 \text{m} \cdot T_L \cdot \sin 150^\circ - 240 \text{N} \cdot 1.5 \text{m} - 90 \text{N} \cdot 0.5 \text{m} = 0$$

which yields $\underline{T_L = 270 \text{ N}}$. For the x and y components of the total force we get

$$T_L \cdot \sin 150^{\circ} - 240 \text{N} - 90 \text{N} + T_{R_y} = 0$$

 $T_L \cdot \cos 150^{\circ} + T_{R_x} = 0$

This gives $T_{R_y}=195$ N and $T_{R_x}=203.8$ N. The total tension in the right rope is therefore $T_R=\sqrt{T_{R_y}^2+T_{R_x}^2}=304$ N, with the angle $\beta=\arcsin(T_{R_y}/T_R)=39.9^\circ$.

Problem 2 - Lifting a weight: Yet another static equilibrium problem. Again, we use $\sum \vec{F} = 0$ and $\sum \vec{\tau} = 0$ to obtain a set of equations. We count counter-clockwise torques as positive and pick the point where F_{disk} acts as the pivot point.

a. That allows us to determine F_{musc} :

$$\frac{2}{3}L \cdot F_{musc} \sin 12^{\circ} - \frac{1}{2}L \cdot 24 \text{kg} \cdot 9.8 \frac{m}{s^{2}} \cos 35^{\circ} - L \cdot 12 \text{kg} \cdot 9.8 \frac{m}{s^{2}} \cos 35^{\circ} = 0$$

The required force is $F_{musc} = 1391 \text{ N}$.

b. F_{disk} can be obtained by requiring that the sum of all forces on the spine vanishes (as it is not accelerating):

$$F_{disk_x} - F_{musc}\cos(35^{\circ} - 12^{\circ}) = 0$$

$$F_{disk_y} - F_{musc}\sin(35^{\circ} - 12^{\circ}) - 24\text{kg} \cdot 9.8\frac{m}{s^2} - 12\text{kg} \cdot 9.8\frac{m}{s^2} = 0$$

This gives $F_{disk_x}=1281$ N and $F_{disk_y}=896$ N. Therefore, $F_{disk}=1563$ N and $\beta=35^{\circ}$.

- **c.** The force F_{disk} is approximately 2.5 times as large as the weight of the person.
 - **d.** As β and θ are identical, the compressive force is the same as F_{disk} .
- e. Lifting the weight corresponds to increasing the weight acting at the top of the spine a factor of two. This increases F_{disk} to 2312 N and the compressive force to 2311 N, as β changes to 34°.
- f. Bending the knees to pick up an object allows the upper body to stay upright, i.e. brings the angle θ closer to 90°. For $\theta = 90^{\circ}$, the change in the compressive force for picking up a 12 kg object is only 118 N, as opposed to more than 700 N in the example above.