Massachusetts Institute of Technology
Department of Physics
8.01T Fall 2004

Study Guide Final Exam Solutions
Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines
Problem 1 Energy Transformation, Specific Heat and Temperature

Suppose a person of mass m=6.5x10°kg is running at a speed v=3.8m/s and has a
catabolic power output (rate of internal energy consumption) 9.45x10°W during a
1.0x1 *km workout. Suppose the runner converts 20% of the internal energy change into
mechanical work. The rest of the energy goes into heat. If the specific heat of the runner
isc=4.19x10° J/kg— K, how much would the body temperature rise after running
thelOkm ?
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Problem 2 Kinetic Theory An ideal gas has a density of 1.78 kg/m? is contained in a
volume of 44.8 x 10° m*. The temperature of the gas is 273 K. The pressure of the gas is

1.01 x 10° Pa. The gas constant R =8.31J-K™-mole™.

a) What is the root mean square velocity of the air molecules?
b) How many moles of gas are present?

c) What is the gas?

d) What is the internal energy of the gas?
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Problem 3: Carnot Cycle of an Ideal Gas

In this problem, the starting pressure P, and volume V, of an ideal gas in state a, are
given. The ratio R, =V, /V, >1 of the volumes of the states ¢ and a is given. Finally a
constant y =5/3 is given. You do not know how many moles of the gas are present.

a) Read over steps (1)- (4) below and sketch the path of the cycle ona P -V plot on the
graph below. Label all appropriate points.
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(1) In the first of four steps, a to b, an ideal gas is compressed from V, to V, while no

heat is allowed to flow into or out of the system. The compression of the gas raises the
temperature from an initial temperature T, and to a final temperature T, . During this

process the quantity PV” = constant, where y =5/3.

a) What is the pressure P, and volume of the gas V, after the compression is
finished?

Answer: According to the ideal gas law, BV, =n_RT, and PV, =n RT, so

T
RV, =PV, 2.
b%b aa-l-

1
So the pressure

a

p-pLl
Vb Tl

The compression satisfies BV,” = PV,” so using the above result for pressure B,, we get



RV =P Yaley s _py 7,
'V, T,

b "1

This becomes using y =5/3

N

213 _ 2/3
Vb = Va

The volume V, is then

Thus the ratio of the volumes is

So the pressure P, is

T 5/2
Tl

b) What is the change in internal energy of the gas during this change of state?
Answer: The change in internal energy is

U,-U, =3nrat=3py, 2T
2 2 T,

c) What is the work done by the gas during this compression?

Answer: Since no heat is exchanged Q,, =0

3
U,-U,=-W_,+Q,=-W :EPV (TT
1

T)

So
(M-T) _
ba — _E Pava T1




The surroundings do work compressing the gas.

(2) The gas is now allowed to expand isothermally from b to ¢, from volume V, to
volume V, .

d) Express the work done by the gas in this process W, and the amount of heat Q,,
that must be added from the heat source at T, intermsof P,,V,, T,, T, and V..
Is this heat positive or negative? Explain whether it is added to the system or
removed.

Answer: This is an isothermal expansion so the temperature does not change AT =0. Thus
the internal energy is constant,

u,-U, :gnmRAT 0.

The gas does work on the surroundings because it is expanding. The pressure is not
constant during this expansion. Since the gas is expanding by an isothermal process, the
Ideal Gas Law relates the pressure and volume variation according to

Therefore the work done by the gas on the surroundings is the integral
VC dV
W, =n_RT, jvb 5= RT N /V,).

Using the result for the volume V, from part a)

T 3/2
w3 v
2

the work is

3/2
W,, =n_RT, jvv O\'/—V =n RT, IH(G_ZJ V. IV,)

1

Recall that the volumes are related accordingto R, =V, /V, >0 and n,R=P\V, /T, so
the work done is positive and given by



3/2
W, =n_RT,In(V, /V,) = Pava%ln((%} R,)>0

1 1
From The First Law of Thermodynamics,

O=Uc _Ub =_ch +ch'

Thus the heat that flows into the system from the heat source at temperature T, is equal
to the work done by the expanding gas.

3/2
T T.
Qy =W, =PV, T_ZIH(LT_ZJ R,)>0,
1

1

Note that this heat flow must flow from the higher temperature heat source into the
system because as the gas expands it should lose internal energy and would decrease its
temperature unless heat flows into the system keeping the internal energy and hence the
temperature constant.

e) What is the pressure P, of the gas after the expansion is finished?

Answer: PV, =n RT, = %TZ . Thus

1
o PVLT,_PRT,
VC Tl I:\)‘\/ Tl

(3) When the gas has reached point ¢ is expands from V, to V, while no heat is allowed

to flow into or out of the system. The expansion of the gas lowers the temperature and
pressure from an initial temperature T, to a final temperature T, . During this process the

quantity PV” = constant.

f) What is the pressure P, and the volume V, of the state d of the gas after the
expansion is finished?

Answer: This calculation is identical to part a), with state d replacing state a, and state ¢
replacing state b. So the volume V, is then



Thus the ratio of the volumes is

So the pressure P, is
5/2

hence
5/2

g) What is the change in internal energy of the gas during this change of state?

Answer: The decrease in the internal energy is due to the temperature decrease of the
ideal gas during expansion

u,-u, =2py, =T
2 T,

h) What is the work done by the gas during this expansion?

Answer: Since no heat is exchanged Q.. =0

3
U,-U, =W, +Q, =W :EPV (I-T
1

)

So

W,, PV (T, T)
P T

The gas does work on the surroundings since the gas is expanding.

(4) The gas is now compressed isothermally from d to a at constant T, from volume V,
back to V,.

i) Find the work done by the system on the surroundings W,, and the amount of heat
Q,s that flows between the system and the surroundings. Are these quantities

10



positive or negative? Explain whether heat is added to the system or removed from
the heat source at T,.

Answer: When the gas undergoes compression it will increase its internal energy but heat
flows out of the system maintaining constant internal energy, AU =0 and hence the
compression is isothermal. The calculation of the work and heat is similar to step (2) except
the temperature is held at T, . The work done by the system on the surroundings is negative
and is given by the integral

W,, =n_RT, jvvci/—v =n_RT,In(V, /V,) = PV, In(V, /V,) = =PV In(R, ).

3/2
From part f) the volume V, :(TI'_Z] V. so the work done is

1

3/2 3/2
v, dV T T
W,, =n, RT, jvd Y= RTIN0, /Ve) = RV, Inv, /(T—Zj V.)=-PV, |n((T—2j R,)

1 1

According to the First Law this is equal to the heat that flows into the system which is
also negative which means that it actually flows out of the system into the surroundings
at temperature T,

1

3/2
Qad =Wad = _Pava In((-.lr._zj RV) .

Total Cycle:
j) What is the total work W

cycle

done by the gas during this cycle?

Answer: The work done by the heat engine on the surroundings during the cycle is
positive and given by
TZ
—<-11.

(fromT,) drawn from the higher temperature heat

3/2

3/2 3/2
T T T T
W, .. = PV, -2In(| = —PV, In(| =2 =PV, In( =2
cycle a a-l-1 ((le RV) a'a ((le R'\/) a'a ([le

k) What is the total heat Q
source during this cycle?

cycle

Answer: The heat that flowed from the higher temperature heat source T, occurred
during step (2) b — ¢ isothermal expansion,

11



3/2
Q" taken from heat source at T, = PaVaT—ZIn((T—Zj R).

1 1

[) What is the efficiency of this cycle ¢, =W, / Q. (fromT,)?

Answer: The efficiency is given by ratio of the work done divided by the ehat flowing
into the system from the higher temperature heat source

3/2 3/2
T T T T
gmax =chcle /Qcycle ( from TZ) = PaVa In((?zj RV ) (?2 _]}/ PaVa -I-_2 In([T_ZJ R\/ )
1 1

1 1

g =[le_q|la_Tzh AT
Tl

Table 1: Summary of Heat Engine

Process U, -U, W, , Q:
adiabatic 2 % T 3PV (T,-T)
compression g aa ;
positive negative
b—c 3/2 312
T T. T T
isothermal 0 PaVa—ZIn([—Zj R,) Pava?zln((?zj R,)
expansion LI 0
positive from T,
positive
c— d_ EPV (T,-T,) 0
adiabatic 2% T §PV (T,-T)
expansion 2 % T
negative positive
_ d—>a T, 312 T, 32
isothermal 0 “RV.In( = R) “RV.In( =1 R)
compression : o
negative negative, into T,
Total 3/2 3/2
T. T T T.
PV,-%In( = PV,-%In( =
S PR N PR
T 3/2 T 3/2
~PV, In( = ~PV, In(| =
w0 | ewn(Z]
positive positive,

from T, into T,
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Problem 4 Heat pump

A reversible heat engine can be run in the other direction, in which case it does negative
work W, .. on the world while “pumping” heat Q.. (into T,) into a reservoir at an upper

cycle cycle

temperature, T,, from a lower temperature, T,. The heat gain of this cycle, defined to be

=@1/e

max )

g = Qcycle (intO TZ) /chcle
where ¢, = (T, —T,)/T, is the maximum thermodynamic efficiency of a heat engine.
The refrigerator performance is defined to be

K= Qcycle (fromT) /W, =T, /(T, - T))

ycle
Consider that you have a large swimming pool and plan to heat your house with a heat
pump that pumps heat from the pool into your house. A large plate in the water will
remain at 0 °C due to the formation of ice. You pick T, to be 50 °C , which will be the
temperature of the (large) radiators used to heat your house. Assume that your heat pump
has the maximum efficiency allowed by thermodynamics.

a) What is the heat gain and the refrigerator performance for this cycle? Be careful to
use units of Kelvin for temperature.

b) If your house formerly burned 1200 gallons of oil in a winter (at $2.00/gallon), how
much will the electricity cost (at $0.10 per kilowatt-hour) to replace this heat using
the heat pump? A gallon of oil has mass 3.4 kg and contains 1.4x10° J-gal™.

¢) The ice cube that appears in your pool over the winter will be how many meters on
each side? (It takes 3.35x10° J to melt one kg of ice; it takes up this much heat when
freezing.)

This would be great for cooling your house in the summer — even if the pool warmed up
enough to swim in it, you could still cool your house by running the heat pump in reverse
as an air conditioner! More practically, you might be able to use ground water (and the
dirt around it) as the heat sink.

13
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Part Two: Earlier Material

Problem 1: (Momentum and Impulse)

A superball of m =0.08kg, starting at O

rest, is dropped from a height falls A

h, =3.0m above the ground and ‘h ' D
bounces back up to a height of s }‘

h,=2.0m. The collision with the ? LY

it =

ground occurs over At, =5.0ms.

——— e i—— o

a) What is the momentum of the ball immediately before the collision?
b) What is the momentum of the ball immediately after the collision?
c) What is the average force of the table on the ball?

d) What impulse is imparted to the ball?

e) What is the change in the kinetic energy during the collision?

Assume that the rubber has a specific heat capacity of ¢, =0.48cal -g™-°C™ and that all
the lost mechanical energy goes into heating up the rubber. What is the change in

17
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Problem 2: (Conservation of Energy and Momentum)

An object of mass m, =1.5kg is initially moving with a velocity v, . It collides
completely inelastically with a block of mass m, =2.0kg . The second block is attached

to a spring with constant k =5.6x10*N -m™. The block and spring lie on a frictionless
horizontal surface. The spring compresses a distance d =2.0x10™"m.

My
oy e
a) What is the velocity of the object of mass m, and the block immediately after the

collision?

b) What is the initial velocity of the object of mass m, immediately before the
collision?

c) If the block were attached to a very long string and hung as a pendulum, how high
would the block and object of mass m, rise after the collision? Let g =9.8m-s™.

20
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Problem 3: (Angular Dynamics)

A playground merry-go-round has a
radius of R =4.0m and has a moment of
inertia 1, =7.0x10°kg - m? about an axis
passing through the center of mass.
There is negligible friction about its
vertical axis. Two children each of mass
m=25kg were standing on opposite
sides a distance r,=3.0m from the
central axis. The merry-go-round is
initially at rest. A person on the ground
applied a constant tangential force of

F =25x10°N at the rim of the merry-
go-round for a time At =1.0x10's.

a) What was the angular acceleration of the merry-go-round?

b) What was the angular velocity of the merry-go-round when the person stopped

applying the force?

¢) What average power did the person put out while pushing the merry-go-round?

d) What was the rotational kinetic energy of the merry-go-round when the person

stopped applying the force?

The two children then walked inward and stop a distance of r, =1.0m from the central

axis of the merry-go-round.

e) What was the angular velocity of the merry-go-round when the children reached

their final position?

f) What was the change in rotational kinetic energy of the merry-go-round when the

children reached their final position?
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Problem 4: (Energy, Force, and Kinematics)

A child’s playground slide is d =5.0m
in length and is at an angle of

0 =2.0x10'deg with respect to the
ground. A child of mass
m, =2.0x10'kg starts from rest at the
top of the slide. The coefficient of
sliding friction for the slide is x4, =0.2.

B e

a) What is the total work done by the friction force on the child?

b) What is the speed of the child at the bottom of the slide?

c) How long does the child take to slide down the ramp?
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Problem 5: (Planetary Orbits)

Comet Encke was discovered in 1786 by Pierre Mechain and in 1822 Johann Encke
determined that its period was 3.3 years. It was photographed in 1913 at the aphelion

distance, r, =6.1x10"m, (furthest distance from the sun) by the telescope at Mt. Wilson.
The distance of closest approach to the sun, perihelion, is r, = 5.1x10"m. The universal
gravitation constant G =6.7x10™*N -m?-kg . The mass of the sun is m, =2.0x10%kg .

a) Explain why angular momentum is conserved about the focal point and then write
down an equation for the conservation of angular momentum between aphelion
and perihelion.

b) Explain why mechanical energy is conserved and then write down an equation for
conservation of energy between aphelion and perihelion.

c) Find the velocities at perihelion and aphelion.
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Problem 6: escape speed of moon

Find the escape speed of a rocket from the moon. Ignore the rotational motion of the
moon. The mass of the moon is m=7.36x10%kg. The radius of the moon is

R=1.74x10°m
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Problem 7: (Torque and angular acceleration)

A pulley of mass m , radiusR, and

moment of inertia I, =(1/2)m R’

about the center of mass is hung from a
ceiling with a massless string. A
massless inextensible rope is wrapped
around the pulley an attached on one
side to an object of mass m, and on the

other side to an object mass m, >m, . At

time t =0, the objects are released from
rest.

a) Draw the free body diagram on the pulley and the two objects.
b) Write down Newton’s Second Law for the pulley and the two objects.

c) Write down the rotational equation of motion for the pulley.

d) Find the direction and magnitude of the translational acceleration of the two

objects.

e) How long does it take for the object of mass m, to fall a distance d ?

f) What is the tension on the two sides of the rope?
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Problem 8: Projectile Motion

A bat hits a baseball into the air with an initial speed, v, =5.0x10'm/s, and makes an

angle 6 =3.0x10"deg with respect to the horizontal. How high does it go from the point

where it was hit? How far does the ball travel if it is caught at exactly the same height
that it is hit from? When the ball is in flight, ignore all forces acting on the ball except for
gravitation.
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