
    
   

 
   

 
            

          
            

 
        

  
 

       
 

            
            

            
           

            
   

 
   
 

              
            
          

 
 

              
 
   
 

         
 

   

 
          

 
   
 

     
 

Simple and Physical Pendulums
 
Challenge Problem Solutions
 

Problem 1 Solutions: 

For this problem, the answers to parts a) through d) will rely on an analysis of the 
pendulum motion. There are two conventional methods of analyzing the pendulum, 
which will be presented here. Unconventional methods are not in the current plan. 

The two methods are consideration of torque and angular acceleration and use of 
Newton’s Second Law. 

Method I: Torque and Angular Acceleration 

Choose the origin for calculating torques and angular momentum as the pivot point of the 
pendulum, and let ! be the angular displacement of the pendulum string from the 
vertical. The only forces on the pendulum are the gravitational force on the pendulum 
bob (the pointlike object) and the tension in the string. With respect to the pivot, the 
tension exerts no torque. The moment arm for the gravitational torque is r = l sin ! , for " 

a net torque 

! net = #mgl sin " . (1.1) 

The minus sign in Equation (1.1) is crucial; the torque will act to restore the angle !  to 
its equilibrium value ! = 0 . If ! > 0 , ! net < 0 and if ! < 0 , ! net > 0 (this assumes that 
the angle ! is restricted to the range #! < " < ! , implied by the small-angle 
approximation sin!0 ! !0 ). 

With the assumption of a massless string, the moment of inertia about the pivot point is 

Ipivot = ml 2 . (1.2) 

The angular acceleration ! is related kinematically to the displacement angle ! by 

d 2!" = . (1.3)
dt 2 

The torque, moment of inertia and angular acceleration are related by 

! net = Ipivot " . (1.4) 

Combining Equations (1.1), (1.2), (1.3) and (1.4) yields 



   

 
 

      
 

               
          

               
         
             

 
 
   
 

            
           

           
    

 
     

 

   

 
       

  
 

        
 

   

 
           

       
 

   

 

2 
2 d !"mgl sin! = ml 
dt 2 (1.5)

d 2! g+ sin! = 0.
dt 2 l 

Method II: Newton’s Second Law 

The object will move in a circular arc centered at the pivot point. The forces on the 
object are the tension in the string and gravity. The tension in the string could be found 
from the speed of the object and the angle from the vertical, but that’s a different 
problem, solved many times in these practice problems. Our concern is with the 
tangential force, which is the component of the gravitational force along the arc of the 
circle, 

Ft angential = "mg sin! . (1.6) 

The sign in Equation (1.6) is crucial; the tangential force tends to restore the pendulum 
to the equilibrium value ! = 0 . If ! > 0 , Ft angential < 0 and if ! < 0 , Ft angential > 0 . As in 
Method I above, this assumes that the angle ! is restricted to the range #! < " < ! , 
implied by the small-angle approximation sin!0 ! !0 . 

The tangential component of acceleration is 

d 2! atangential = l" = l 2 ; (1.7)
dt 

using this in Newton’s Second Law, Ft angential = matangential reproduces the second 
expression in (1.5). 

In the limit of small oscillations, sin! ! ! , this expression becomes 

d 2! g+ ! = 0. (1.8)
dt 2 l 

The solutions to (1.8)  are  well-known. With the initial condition that the pendulum is 
released from rest at a small angle !0 , 

# g $ # 2! $" ( )t = " 0 cos&& t '' = " 0 cos(% t )= " 0 cos& t (1.9)' l ( T )( ) 



          

         

 
        

 
        

 
         

       

   

 
    

   

 
 

 
   
 

         
 

   

 
              

 

   

 
 

           

         
              

             
        

 
             

        
 

where ! is the angular frequency of oscillation (denoted ! to distinguish from the 
d!kinematic variable " = ) and T is the period of oscillation. 
dt 

a) From inspection of the expression in (1.9), the period is T = 2! /l g . 

b) Similarly, the angular frequency of oscillation is /g l . 

c) We could use energy considerations, with the initial gravitational potential energy 
relative to the bottom of the swing as 

!0
2 

mgl (1" cos ! )! mgl (1.10)0 2 

and set this equal to 

K = 
1 mv 2 (1.11)
2 max 

to obtain 

vmax = gl !0 . (1.12) 

Or, we could use a standard result for harmonic oscillations, 

gv = l! = l" . (1.13)max max 0 l 

d) From the result of part c) (parts c) and d) are really the same), 

g " 0 . (1.14)!max = 
l 

d!e) The angular velocity " = is a kinematic variable that changes with time in an 
dt 

oscillatory manner (sinusoidally in the limit of small oscillations). The angular frequency 
! is a parameter that describes the system. The angular velocity ! , besides being time-
dependent, depends on the amplitude of oscillation !0 . In the limit of small oscillations, 
! does not depend on the amplitude of oscillation. 

f) Algebraically, the mass divided out from both the torque and the moment of inertia, or 
from the net force and the acceleration term in Newton’s Second Law. 



             
           

             
                
     

Consider also the argument that is attributed to Galileo: If a pendulum consisting of two 
identical masses joined together were set to oscillate, the two halve would not exert 
forces on each other. So, if the pendulum were split into two pieces, the pieces would 
oscillate the same as if they were one piece. This argument can be extended to simple 
pendula of arbitrary masses. 



     
 

              
               

             
     

 

 
 

      
 

 
            

        
 
 

   
 

               
                  

         
 

  
 

              
 

 

  
 

 
              
    

 

Problem 2: Physical Pendulum 

A physical pendulum consists of two pieces: a uniform rod of length d and mass m 
pivoted at one end, and a disk of radius a , mass m1 , fixed to the other end. The pendulum 
is initially displaced to one side by a small angle !0 and released from rest. You can then 
approximate sin! " ! (with ! measured in radians). 

a)	 Find the period of the pendulum. 

b)	 Suppose the disk is now mounted to the rod by a frictionless bearing so that is 
perfectly free to spin. Find the new period of the pendulum. 

Problem 2 Solutions: 

a) The physical pendulum consists of two pieces. A uniform rod of length d and a disk 
attached at the end of the rod. The moment of inertia about the pivot point P is the sum 
of the moments of inertia of the two pieces, 

total rod + IP
disc IP = IP 

We calculated the moment of inertia of a rod about the end point P in class, and found 
that 

rod 1
IP = md 2 .

3 

We can use the parallel axis theorem to calculate the moment of inertia of the disk about 
the pivot point P , 



   
 

              
 

 

  
 

 
      

 

  
 

 
             
              

            
 

 
        

 
 

 

 
 

    
 

disc disc + m1= I d 2 .IP cm 

We calculated the moment of inertia of a disk about the center of mass in class, and found 
that 

disk 1 2I = m1a . cm 2 

So the total moment of inertia is 

1 1 2total IP = md 2 + m1d
2 + m1a .

3 2 

The force diagram on the pendulum is shown below. In particular, there is an unknown 
pivot force, the gravitational force acting at the center of mass of the rod, and the 
gravitational force acting at the center of mass of the disk. 

The torque about the pivot point is given by 

! ! ! ! !
" P = rP cm , ! mg + r , ! m g .P disc 1 

!! = ˆ # mg ($sin " " ̂ + cos ̂ ) + dr # m g ($sin " " ̂ + cos ̂ ) = $ d m + dm )g sin ˆ( / 2) d r r ˆ r (( / 2) "kP 1 1 

. 

The rotational dynamical equation is 



 
 

 
 

 

 
            

 
  

 
   

 

  

 

 
         

 

  

 

 
 

 

  
 

 
               

                
              

 

  
 

 
       

 

  
 

      

total !! = I "! .P p 

Therefore 

1 1 d 2! ˆ(( / 2) m + dm 1)g sin ! k̂ = (" d md 2 + m d 2 + m a 2 )1 2 k . 
3 1 2 dt 

When the angle of oscillation is small, then we can use the small angle approximation 

sin! " ! . 

Then the pendulum equation becomes 

d 2! (d / 2)m + dm
" # 1 ! . 

dt2 1 1 2md 2 + m1d
2 + m1a3 2 

The angular frequency of oscillation for the pendulum is approximately 

(d / 2)m + dm1! " pendulum 1 1 2
, 

md 2 + m d 2 +
3 1 2 

m1a

with period 

1 md 2 + m1d
2 + 

1 m1a
2 

2! 3 2T = # 2! .
" p (d / 2)m + dm1 

b) If the disk is not fixed to the rod, then it will not rotate as the pendulum oscillates. 
Therefore it does not contribute to the moment of inertia. Notice that the pendulum is no 
longer a rigid body. So the total moment of inertia is only due to the rod, 

1total IP = md 2 .
3 

Therefore the period of oscillation is given by 

1 md 2 
2! 3T = # 2!
" p (d / 2)m + dm1 



                   
                 

                
                

           

      

 
          

 
               

  
 

          
 

             
 

           
 
 

   
 

 

 

 

 

Problem 3: A physical pendulum consists of a disc of radius R and mass m1 fixed at the 
end of a massless rod. The other end of the rod is pivoted about a point P . The distance 
from the pivot point to the center of mass of the bob is l . Initially the bob is released 
from rest from a small angle !0 with respect to the vertical. At the bottom of the bob’s 
trajectory, it collides completely inelastically with another less massive disc of radius R 
and mass m2 , m1 > m2 . 

a) What is the period of the bob before the collision?
 

b) What is the velocity of the bob just before the collision at the bottom of the bob’s
 
trajectory?
 

c) What is the velocity of the bob and disc immediately after the collision?
 

d) What is the new period of the pendulum after the collision?
 

e) What angle does the pendulum rise to when it next comes to rest?
 

Problem 3 Solutions: 

a) 

IP = 
2
1 m1R

2 

! 
! p = I p " 

k̂ 
dt 2 

d 2$ "m1g 

#"mgsin$ k̂ = I p
d 2$ 

+ sin$ = 0
dt 2 I p 

sin$ %$ 

d 2$ "m1g+ $ = 0
dt 2 I p 



 

 

 

 
 

 
 

 
    

 

 

 
 

 

 

 
 

 
   

 

!m1g !m1g 2!! = 
I p 

= =1 R2 
g 

2 
m1R

2 

b) 

E0 = m1g!(1 ! cos" 0 ) 
1 2Eb = I p#b2 

vb = !#b 

1 vb 
2 

Eb = I p2 !2 

1 vb 
2 

E0 = Eb ! m1g!(1 " cos#0 ) = I p2 !2 

1 vb 
2 

m1g!(1 ! cos" 0 ) = 
2 
I p !2 

= 2 
m1g!

3 (1 ! cos" 0 ) = 4 
g!3 

(1 ! cos" 0 )vb 1 R2 

2 
m1R

2 

c) 

momentum is conserved 



 

 

  

 
         

    
 

 

 

 

 

 

 

m1vb,1 = (m1 + m2 )va 

d) 

va = 
m1vb,1 m1 # 4g!3 & 

= 
$% R2 (1 ! cos" 0 )('m1 + m2 m1 + m2 

Since the oscillation frequency is independent of the mass because I p
final = 

1 ) R2 

2 
(m1 + m2 

2!
! is the same, ! = 

R2 
g 

Ea = Ef 

1 2 2 
after va 1 ) R

2vaEa = = (m1 + m2I p2 !2 4 !2 

Ef = (m1 + m2 )!(1 ! cos" f )g 

e) Ea = Ef # 

1 R2va 
2 

4 !2 
= !(1 ! cos" f )(m1 + m2 )g 

1 R2 $ 'm1 

() 
vb 
2 = !(1 ! cos" f )(m1 + m2 )g4 !2 %& m1 + m2
 

m1 1
 
I p,beforev0

2 / !2 = !(1 ! cos" f )(m1 + m2 )gm1 + m2 2 



 

 

! m1 $ (m1g!(1 ' cos(0 ))#" m1 + m2 %& 

= m1 + m2 )g ! (( ( ) 1 ' cos( f ) 
m1
2 

) 
)2 (1 ' cos(0 ) = (1 ' cos( f )(m1 + m2 

! 2 $ 
cos( f = 1 ' # 

m1 (1 ' cos(0 )& 
" (m1 + m2 )2 

% 



  
 

               
           

 
             

 
           

           
 

 
 

   
 

           
           

 

 

 
            

                 
    

 
            

         
             
            

        
 

  

Problem 4: 

A wrench of mass m is pivoted a distance lcm from its center of mass and allowed to 
swing as a physical pendulum. The period for small-angle-oscillations is T . 

a)	 What is the moment of inertia of the wrench about an axis through the pivot? 

b)	 If the wrench is initially displaced by an angle !0 from its equilibrium position, 
what is the angular speed of the wrench as it passes through the equilibrium 
position? 

Problem 4 Solutions: 

a) The period of the physical pendulum for small angles is T = 2! IP / ml cm g ; solving 
for the moment of inertia of the wrench we determine that 

2T ml cm gIP = . 
4! 2 

b) For this part, we are not given a small-angle approximation, and should not assume 
that !0 is a small angle. We will need to use energy considerations, and assume that the 
pendulum is released from rest. 

Taking the zero of potential energy to be at the bottom of the pendulum’s swing, the 
initial potential energy is U initial = mgl cm (1" cos !0 ) and the final kinetic energy at the 
bottom of the swing is U = 0 . The initial kinetic energy is K = 0 and the final final	 initial 

kinetic energy is related to the angular speed ! at the bottom of the swing by final 

K = (1/ 2 )I ! 2 . Equating initial potential energy to final kinetic energy yields final P final 

22mgl (1$ cos ! ) 8" 2 cm 0# = = 2 (1$ cos !0 ) .final IP T 
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