
  

     
 
 

  
 

          
            
           

           
             

             
          

         
           

          
       

            
    

        
              

        
         

            
  

 
       

 
 

 
 

   
 

   
 

   
 

          
    

 
 
 

  
 

Module 23: Static Equilibrium
 

23.1 Introduction Static Equilibrium 

We have already seen in section 4.4 that if the vector sum of the forces acting on a point-
like object is zero then the object will continues in its state of rest, or of uniform motion 
in a straight line. If the object is in uniform motion we can always change reference 
frames so that the object will be at rest. In section 9.2, we showed that for a collection of 
point-like objects the sum of the external forces may be regarded as acting at the center of 
mass (Equation 9.2.20). So if that sum is zero the center of mass will continue in its state 
of rest, or of uniform motion in a straight line. In section 13.1 we introduced the idea of a 
rigid body, and again showed that in addition to the fact that the sum of the external 
forces may be regarded as acting at the center of mass, forces like the gravitational force 
that acts at every point in the body may be treated as acting at the center of mass. 
However for an extended rigid body it matters where the force is applied because even 
though the sum of the forces on the body may be zero, a non-zero sum of torques on the 
body may still produce angular acceleration. In particular for fixed axis rotation, the 
torque on the object is proportional to the angular acceleration (Equation 13.3.15). It is 
possible for a body that is not constrained to rotate about a fixed axis that the sum of the 
torques may be zero and the body still undergoes rotation. So we would like restrict 
ourselves to the special case in which in an inertial reference frame both the center of 
mass of the body is at rest and the body does not undergo any rotation, a condition that is 
called static equilibrium of an extended object. 

The two sufficient and necessary conditions for a rigid body to be in static 
equilibrium are: 

(1) The sum of the forces acting on the rigid body is zero, 

! ! ! ! 
F = F + F + ! ! != 0 . (23.1.1) total 1 2 

(2) The vector sum of the torques about any point S in a rigid body is zero, 

! ! ! ! 
" S , total = " S ,1 + " S ,2 + ! ! != 0 . (23.1.2) 

When a body is in static equilibrium, the torques about any two points are equal (see 
Appendix 14.A). As a result, when solving static equilibrium problems, wisely choosing 
the point about which to compute torque can greatly simplify a given problem. 

23.2 Lever Law 
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Let’s consider a uniform rigid beam of mass mB balanced on a pivot near the center of 
mass of the beam. We place two point-like bodies 1 and 2 of masses m1 and m2 on the 
beam, at distances d1 and d2 respectively from the pivot, so that the beam is static (that 
is, the beam is not rotating. See Figure 23.1. The finite extent of the bodies, as 
represented in the figure, is not part of this derivation). 

Figure 23.1 Pivoted Lever. 

Let’s consider the forces acting on the beam. The earth attracts the beam 
downward. This gravitational force acts on every atom in the beam, but we can 
summarize its action by stating that the gravitational force near the surface of the earth ! !Fgravity = mB g is concentrated at a point in the beam called the center of gravity of the 
beam, which is identical to the center of mass of the uniform beam. There is also a ! 
contact force Fpivot between the pivot and the beam, acting upwards on the beam at the 

! ! 
pivot point. The bodies 1 and 2 exert normal forces downwards on the beam, NB,1 ! N1 , 

! ! 
and NB,2 ! N2 , with magnitudes N1 , and N2 , respectively. Note that the normal forces 
are not the gravitational forces acting on the bodies, but contact forces between the beam 
and the body. (In this case, they are mathematically the same, due to the horizontal 
configuration of the beam and the fact that all objects are in static equilibrium.) The 
distances d1 and d2 are called the moment arms with respect to the pivot point for the 

! ! 
forces N1 and N2 , respectively. The force diagram on the beam is shown in Figure 23.2. 

! !Note that the pivot force Fpivot and the force of gravity mB g each has a zero moment arm 
about the pivot point. 

Figure 23.2 The Lever Law in action. 
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Because we assume the beam is not moving, the sum of the forces in the vertical 
direction acting on the beam is therefore zero: 

Fpivot ! mB g ! N1 ! N2 = 0 . (23.2.1) 

The force diagrams on the bodies are shown in Figure 23.3. Note the magnitude of the 
normal forces on the bodies are also N1 and N2 since these are each part of an action-

! ! ! ! 
reaction pair, NB,1 = !N1,B , and NB,2 = !N2,B . 

Figures 14.3 Force diagrams for each body. 

The condition that the forces sum to zero is not sufficient to completely 
predict the motion of the beam. All we can deduce is that the center of mass of the system 
is at rest (or moving with a uniform velocity). In order for the beam not to rotate the sum 
of the torques about any point must be zero. In particular the sum of the torques about the 
pivot point must be zero. Since the moment arm of the gravitational force and the pivot 
force is zero, only the two normal forces produce a torque on the beam. If we choose out 
of the page as positive direction for the torque (or equivalently counterclockwise 
rotations are positive) then the condition that the sum of the torques about the pivot point 
is zero becomes 

d N ! d N = 0 . (23.2.2) 2 2 1 1 

So the magnitudes of the two torques about the pivot point is zero, a condition known as 
the lever law. 

Lever Law: 

A beam of length l is balanced on a pivot point that is placed directly beneath the 
center of mass of the beam. The beam will not undergo rotation if the product of the 
normal force with the moment arm to the pivot is the same for each body, 

d N = d N . (23.2.3) 1 1 2 2 

23.2.1 Example Lever Law 
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Suppose a uniform beam of length l = 1.0 m and mass mB = 2.0 kg is balanced on a pivot 
point, placed directly beneath the center of the beam. We place body 1 with mass 
m1 = 0.3 kg a distance d1 = 0.4 m to the right of the pivot point, and a second body 2 
with m2 = 0.6 kg a distance d2 to the left of the pivot point, such that the beam neither 
translates nor rotates. 

! 
a) What is the force Fpivot that the pivot exerts on the beam? 
b) What is the distance d2 that maintains static equilibrium? 

Solution: 

a) By Newton’s Third Law, the beam exerts equal and opposite normal forces of 
magnitude N1 on body 1, and N2 on body 2. The condition for force equilibrium applied 
separately to the two bodies yields 

N ! m g = 0 , (23.2.4) 1 1 

N ! m g = 0 . (23.2.5) 2 2 

Thus the total force acting on the beam is zero, 

Fpivot ! (mB + m1 + m2 )g = 0 , (23.2.6) 

and the pivot force is 

= (mB + m1 + m2 )gFpivot (23.2.7) 
= (2.0 kg+ 0.3 kg+ 0.6 kg)(9.8 m! s "2 ) = 2.8 # 101 N. 

b) We can compute the distance d2 from the Lever Law, 

d1 N1 d1 m1g d1 m1 (0.4 m)(0.3 kg) 
= 0.2 m . (23.2.8) d2 = = = = 

N2 m2 g m2 0.6 kg 

23.3 Generalized Lever Law 
! ! 

We can extend the Lever Law to the case in which two external forces 1F and 2F are 
acting on the beam at angles !1 and !2 with respect to the horizontal as shown in Figure 
23.4. Throughout this discussion the angles will be limited to the range [0 #!1,!2 #" ] . 
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Figure 23.4 Forces acting at angles to a pivoted beam. 

! ! 

! 
F

Since force is a vector quantity, the forces F1 and F2 can be decomposed into 

2, ! 

! !
 ! 
F2,"separate vectors components respectively ( ,F1," F1, ! 

) and ( ) , where F1,! and F2,!,
 
are the horizontal vector projections of the two forces with respect to the direction formed ! ! 
by the length of the beam, and F1,! and F2,! are the perpendicular vector projections 
respectively to the beam (Figure 23.5), with 

F1 = F1, ! + F1,! , (23.3.1) 

F2 = F2, ! + F2,! . (23.3.2) 

Figure 23.5 Vector decomposition of forces. 

The horizontal components of the forces are 

F1, ! = F1 cos !1 , (23.3.3) 

F2, ! = "F2 cos !2 , (23.3.4) 

where our choice of positive horizontal direction is to the right. Neither horizontal force 
component contributes to possible rotational motion of the beam. The sum of these 
horizontal forces must be zero, 

F cos ! " F cos ! = 0 . (23.3.5) 1 1 2 2 
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The perpendicular component forces are 

F1, " = F1 sin !1 ,	 (23.3.6) 

F2, " = F2 sin !2 ,	 (23.3.7) 

where the positive vertical direction is upwards. The perpendicular components of the 
forces must also sum to zero, 

F " m g + F sin ! + F sin ! = 0 .	 (23.3.8) pivot B 1 1 2 2 

Only the vertical components F1,! and F2,! of the external forces are involved in 
the lever law (but the horizontal components must balance, as in Equation (23.3.5), for 
equilibrium). Thus the Lever Law can be extended as follows. 

Generalized Lever Law 

A beam of length l is balanced on a pivot point that is placed directly beneath the ! 
center of mass of the beam. Suppose a force F1 acts on the beam a distance d1 to the 

! 
right of the pivot point. A second force F2 acts on the beam a distance d2 to the left 
of the pivot point. The beam will remain in static equilibrium if the following two 
conditions are satisfied: 

1)	 The total force on the beam is zero, 

2)	 The product of the magnitude of the perpendicular component of the force with 
the distance to the pivot is the same for each force, 

d F = d F .	 (23.3.9) 1 1, ! 2 2, ! 

The Generalized Lever Law can be stated in an equivalent form, 

d F sin ! = d F sin ! .	 (23.3.10) 1 1 1 2 2 2 

We shall now show that the generalized lever law can be reinterpreted as the statement 
that the vector sum of the torques about the pivot point S is zero when there are just two ! ! 
forces F1 and F2 acting on our beam as shown in Figure 23.6. 
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Figure 23.6 Force and torque diagram. 

Let’s choose the +z -direction to point out of the plane of the page then torque 
pointing out of the page will have a positive z -component of torque (counterclockwise 
rotations are positive). From our definition of torque about the pivot point (Equation ! 
13.2.2), the magnitude of torque due to force F1 is given by 

! = d F sin " . (23.3.11) S ,1 1 1 1 

From the right hand rule this is out of the page (in the counterclockwise direction) so the 
component of the torque is positive, hence, 

) = d1F1 sin" 1 . (23.3.12) (! S ,1 z 

! 
The torque due to F2 about the pivot point is into the page (the clockwise 

direction) and the component of the torque is negative and given by 

) = "d2 F2 sin#2 . (23.3.13) (! S , 2 z 

The total component of the torque is the sum of the individual torques and is zero, 

) ) ) = d1F1 sin" 1 # d2 F2 sin" 2 = 0 . (23.3.14) (! S , total z = (! S ,1 z + (! S , 2 z 

which is equivalent to the Generalized Lever Law, Equation (23.3.10), 

d F sin ! = d F sin ! .1 1 1 2 2 2 

23.4 Worked Examples 

23.4.1 Example Estimate Torque on a Tire iron 

Your car has a flat and you try to loosen the lugs on the wheel with a tire iron shown in 
the figure on the left below. You can’t budge the lugs but then you try the 4-way wrench 
shown in the figure on the right and the lugs loosen. Based on the Figure 23.9, estimate 
how much torque you needed to apply to loosen the lugs. 
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Figure 23.9 Force and torque diagram. 

Possible Answer: There are many considerations in this problem, and if you’ve had 
some experience with changing flat tires, you’re aware of what they are. Your 
experience may suggest that the 4-way is overall easier to use. 

Start by keeping in mind that the car should be up on a jack, and many jacks don’t supply 
good overall stability. Applying too much net force, up or down, on the wheel could 
cause the car to fall off the jack. As an example, for a 1983 VW Rabbit (since departed), 
the car could be lifted off the jack. Typically, a person can exert an upward force of 2-3 
times the person’s weight. So, using the simple wrench on the left and pulling up with 
both hands warrants caution. Pushing down, the maximum downward force exerted can’t 
exceed the person’s weight. As an estimate of the net torque, use a force with magnitude 
equal to your weight and a moment arm of about half a meter. For me, that’s about 
500 N ! m . Of course, the angle between the applied force and the wrench should be 
90° ; the wrench arm should be horizontal. 

For the 4-way wrench, assume the same magnitude of force applied on each of the two 
arms used to turn the wrench, one force directed up and the other down. Ideally, this 
would mean that you apply no net force the car, and falling off the jack is less likely.  
Also, you would be able to position yourself more or less symmetric about the wheel, 
making the process a bit more comfortable. (But the forces on your feet wouldn’t be the 
same – see Problem 3.) The forces you exert then form a “couple,” and the torque would 
be the product of the applied force and the moment arm, times 2 for the two arms of the 
wrench. From the figure, it looks like the moment arms are about the same as for the 
simple wrench, so the net torque is roughly your weight times the moment arm of about 
half a meter times 2, or 1000 N m ; much easier to undo the lug nuts. ! 

23.4.2 Example Suspended Rod 

A uniform rod of length l = 2.0 m and mass m = 4.0 kg is hinged to a wall at one end 
and suspended from the wall by a cable that is attached to the other end of the rod at an 
angle of ! = 30o to the rod (see figure below). Assume the cable has zero mass. There is 
a contact force at the pivot on the rod. The magnitude and direction of this force is 
unknown. One of the most difficult parts of these types of problems is to introduce an 
angle for the pivot force and then solve for that angle if possible. In this problem you will 
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solve for the magnitude of the tension in the cable and the direction and magnitude of the 
pivot force. 

a) Draw a free body force diagram for the beam. Clearly indicate your choice of 
angle for the pivot force. 

b) What are the equations for static equilibrium of the forces? 

c) About which point will you choose to analyze the torques? What are the equations 
for static equilibrium of the torques? 

d) What is the tension in the cable? 

e) What angle does the pivot force make with the beam? 

f) What is the magnitude of the pivot force? 

Solution: 

a) The force diagram is shown in the figure below. 

Take the positive î -direction to be to the right in the figure above, and take the positive 
ĵ -direction to be vertically upward. The forces on the rod are: the gravitational force 
! ˆm g = !m g j , acting at the center of the rod; the force that the cable exerts on the rod, 
! 
T = T (!cos" ̂i + sin " ̂j) , acting at the right end of the rod; and the pivot force 
! 
F = F(cos! ̂i + sin! ̂j) , acting at the left end of the rod. If 0 < ! < " / 2 , the pivot pivot 

force is directed up and to the right in the figure. If 0 > ! > "# / 2 , the pivot force is 
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directed down and to the right. We have no reason, at this point, to expect that ! will be 
in either of the quadrants, but it must be in one or their other. 

b) For static equilibrium, the sum of the forces must be zero, and hence the sums of the 
components of the forces must be zero; 

0 = !T cos" + F cos# 

0 = !m g + T sin " + F sin#. 

c), d) While any point may be chosen as the origin for the purposes of finding torques, 
consideration of the problem may give some idea of what the most advantageous point 
would be. Since part d) asks for the tension T , choosing a point that does not involve ! 
the other unknown Fpivot should allow determination of T . Accordingly, find the torques 
with respect to the pivot point. 

With respect to the pivot point, and taking positive torques to be counterclockwise, the 
gravitational force exerts a negative torque of magnitude m g(l / 2) and the cable exerts a 
positive torque of magnitude T l sin ! . The pivot force exerts no torque about the pivot 
(which is sort of the idea).  Setting the net torque equal to zero then gives 

0 = T l sin ! " m g(l / 2) 
m g T = .

2sin ! 

This result has many features we would expect; proportional to the weight of the rod and 
inversely proportional to the sine of the angle made by the cable with respect to the 
horizontal.  Inserting numerical values gives 

m g (4.0kg)(9.8m " s#2 )T = = = 39.2N. 
2sin ! 2sin30! 

e) There are many ways to find the angle ! . The method presented here uses the results 
of the previous parts.  Specifically, substituting the above expression for the tension into 
the force equations yields 

mg F cos! = T cos" = cot " 
2 

mg F sin! = m g # T sin " = . 
2 

From the above, dividing one equation by the other, we see that tan! = tan " ,! = " . 
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As an alternative, if we had not done the previous parts, we could find torques about the 
point where the cable is attached to the wall. The cable exerts no torque about this point, 
and the y -component of the pivot force exerts no torque as well. The moment arm of the 
x -component of the pivot force is l tan ! and the moment arm of the weight is l / 2 . 
Equating the magnitudes of these two torques gives 

lF cos! l tan " = mg ,
2 

equivalent to one of the results found above. Similarly, evaluating torques about the right 
end of the rod, the cable exerts no torques and the x -component of the pivot force exerts 
no torque. The moment arm of the y -component of the pivot force is l and the moment 
arm of the weight is l / 2 . Equating the magnitudes of these two torques gives 

lF sin! l = mg ,
2 

again reproducing a previous result. 

The point of this alternative solution is to show that if the questions had been asked in a 
different order, choosing a different origin (or even more than one origin) in order to 
remove an unknown force from the torques equations might give a desired result more 
directly. 

f) The horizontal forces on the rod must cancel. The tension force and the pivot force act 
with the same angle (but in opposite horizontal directions) and hence must have the same 
magnitude; F = T = 39.2N . 

23.4.3 Example Person standing on a Hill 

A person is standing on a hill that is sloped at an angle of ! with respect to the 
horizontal (Figure 23.11). The person’s legs are separated by a distance d , with one foot 
uphill and one downhill. The center of mass of the person is at a distance h above the 
ground, perpendicular to the hillside, midway between the person’s feet. Assume that the 
coefficient of static friction between the person’s feet and the hill is sufficiently large that 
the person will not slip. 
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Figure 23.11 Person standing on hill 

a) What is the magnitude of the normal force on each foot? 

b) How far must the feet be apart so that the normal force on the upper foot is just 
zero? This is the moment when the person starts to rotate and fall over. 

Solution: 

The force diagram on the person is shown in Figure 23.12. Note that the contact forces 
have been decomposed into components perpendicular and parallel to the hillside. A 
choice of unit vectors and positive direction for torque is also shown. 

Figure 23.12 Free body diagram for person standing on hill 

Applying Newton’s Second Law to the two components of the net force, 

ĵ : N1 + N2 " mg cos ! = 0 (23.4.1) 

î : f1 + f2 " mg sin ! = 0 . (23.4.2) 
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These two equations imply that 

N1 + N2 = mg cos ! (23.4.3) 

f1 + f2 = mg sin ! . (23.4.4) 

Evaluating torques about the center of mass, 

dh( f1 + f2 ) + (N2 ! N1) = 0 . (23.4.5) 
2 

Equation (23.4.5) can be rewritten as 

2h( f1 + f2 )
N1 ! N2 = . (23.4.6) 

d 

Substitution of Equation (23.4.4) into Equation (23.4.6) yields 

2 ( sin !h mg ) 
1 2 d 

. (23.4.7) N " N = 

We can solve for N1 by adding Equations (23.4.3) and (23.4.7) and dividing by 2, giving 

1 ( sin ! ) "h mg 1 h # = mg cos ! + = mg cos ! + sin ! % . (23.4.8) N1 $2 d & 2 d ' 

Similarly, we can solve for N2 by subtracting Equation (23.4.7) from Equation (23.4.3) 
and dividing by 2, giving 

" 1 h #N2 = mg % cos ! $ sin ! & . (23.4.9) 
' 2 d ( 

The normal force N2 as given in Equation (23.4.9) vanishes when 

1 h 
cos ! = sin ! , (23.4.10) 
2 d 

which can be solved for the minimum distance between the legs, 
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d = 2 (tan h ! ) .	 (23.4.11) 

In the above figures, ! = 20 ° , 2 tan ! = 0.73 and the stick-figure person is very close to 
tipping over. 

It should be noted that no specific model for the friction force was used, that is, no 
coefficient of static friction entered the problem. The two friction forces f1 and f2 were 
not determined separately; only their sum entered the above calculations. 

23.4.4 Example Static Equilibrium: Rope Between Trees 

Suppose a rope of mass m = 0.1kg is connected at the same height to two walls and is 
allowed to hang under its own weight. At both contact points between the rope and the 
wall, the rope makes an angle ! = 60 ° with respect to the vertical (Figure 23.13). In order 
to find the tension in the rope at the ends and at the middle of the rope, you will need to 
think cleverly about what to include as the system in your free body diagram. 

Figure 23.13 Rope suspended between two trees 

a)	 What is the tension at the ends of the rope where they are connected to the wall? 
Include in your answer your free body force diagram. Show all the forces acting 
on the rope and your choice of unit vectors. 

b)	 What is the tension in the rope at the point midway between the walls? Include in 
your answer your free body force diagram. Show all the forces acting on the rope 
and your choice of unit vectors. 

Solution: 

The key to this problem is in understanding how to choose a force diagram for an 
extended body. Note that we are trying to find the tension at the ends of the rope and at 
the midpoint. We defined tension at a point in a rope to be: 

The tension T (x) in a rope at a distance x from one end of the rope is the 
magnitude of the action-reaction pair of forces acting at the point x , 
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! ! 
x = x F x (23.4.12) T ( ) Fleft, right ( ) = right, left ( ) . 

This definition suggests that we need to slice the rope at the midpoint to calculate the 
tension at the midpoint. Let’s consider then only half the rope. The forces on half the rope ! ! 
are the tension T at the end, the tension T at the midpoint and the gravitational force end mid !between the half of the rope and the earth, (m / 2)g . The free body diagram for the left 
half of the rope is shown in Figure 23.14, with a suitable choice of unit vectors. 

Figure 23.14 Free body diagram for left half of rope 

Since the rope is in static equilibrium, the sum of the forces is zero. The sum of the 
components of the forces in the ĵ -direction is zero, 

!
ĵ : Tend cos ! " (m / 2) g = 0 . (23.4.13) 

Therefore the tension at the end is 

#2 )! (m / 2)g ((0.1kg)/2)(9.8 m " s
= = 0.98 N . (23.4.14) Tend = 

cos! cos60° 

The sum of the components of the forces in the î -direction is zero. 

! !
î : " T sin ! + T = 0 . (23.4.15) end mid 

Substitute Equation (23.4.14) into Equation (23.4.15), yielding 

"(m / 2) g sin ! ! 
+ Tmid = 0 . (23.4.16) 

cos ! 

Then solve for tension in the middle of the rope, 
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! ! 
= (m / 2)g tan! = ((0.1 kg)/2)(9.8 m " s#2 ) tan60° = sin60°Tmid Tmid (23.4.17) 
= 0.85 N. 

23.4.5 Example The Knee 

A man of mass m = 70kg is about to start a race. Assume the runner’s weight is equally 
distributed on both legs. The patellar ligament in the knee is attached to the upper tibia ! 
and runs over the kneecap. When the knee is bent, a tensile force, T , that the ligament 
exerts on the upper tibia, is directed at an angle of ! = 40 ° with respect to the horizontal. ! 
The femur exerts a force F on the upper tibia. The angle, ! , that this force makes with 
the vertical will vary and is one of the unknowns to solve for. Assume that the ligament is 
connected a distance, d = 3.8cm , directly below the contact point of the femur on the 

1tibia. The contact point between the foot and the ground is a distance s = 3.6 10 cm ! 
from the vertical line passing through contact point of the femur on the tibia. The center 
of mass of the lower leg lies a distance x = 1.8 10 cm ! 1 from this same vertical line. 
Suppose the mass mL of the lower leg is a 1/10 of the mass of the body (Figure 23.15). 

! 
a) Find the magnitude T of the force T of the patellar ligament on the tibia. 

! 
b) Find the direction (the angle ! ) of the force F of the femur on the tibia. 

! 
c) Find the magnitude F of the force F of the femur on the tibia. 

Figure 23.15 Knee 

For a more detailed picture of this “articulation,” see Illustrations. Fig. 345. Gray, Henry. 
1918. Anatomy of the Human Body. 
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Solutions: 

a) Choose the unit vector î to be directed horizontally to the right and ĵ directed 
vertically upwards. The two conditions for static equilibrium are 

(1) The sum of the forces acting on the rigid body is zero, 

! ! ! ! ! ! 
F = F + F + F + F = 0 . (23.4.18) total 1 2 3 4 

(2) The vector sum of the torques about any point S in a rigid body is zero, 

!
!
S , total =
 

!
!
S ,1 +
 

!
!
S , 2 +


!
!S ,3 =
 

!
 
0 . (23.4.19)
 

The first condition that the sum of the forces is zero becomes 

î : ! F sin" + T cos# = 0 
(23.4.20) 

ĵ : N ! F cos" + T sin# ! (1 / 10)mg = 0. 

Since the weight is evenly distributed on the two feet, the normal force on one foot is 
equal to half the weight, or 

N = (1 / 2)mg ; (23.4.21) 

the second equation in (23.4.20) becomes 

ĵ : (1 / 2)mg ! F cos" + T sin# ! (1 / 10)mg = 0 . (23.4.22) 
(2 / 5)mg ! F cos" + T sin# = 0. 

The torque-force diagram on the knee is shown in Figure 23.16. 
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Figure 23.16 Torque-force diagram for knee 

Choose the point of action of the ligament on the tibia as the point S about which to ! 
compute torques. Note that the tensile force, T , that the ligament exerts on the upper tibia 
will make no contribution to the torque about this point S . This may help slightly in 
doing the calculations. Choose counterclockwise as the positive direction for the torque; 
this is the positive k̂ - direction. 

! 
Then the torque due to the force F of the femur on the tibia is 

!
 !

!
 "
 

! 
F = d ĵ " (# F sin$ ̂i # F cos$ ĵ) = d F sin$ k̂ . (23.4.23) = rS ,1 S ,1 

The torque due to the mass of the leg is 

! !
! = r " (#mg / 10) ĵ = (#x ̂i # y ĵ) " (#mg / 10) ĵ = (1 / 10)x mg k̂ . (23.4.24) S , 2 S , 2 L 

The torque due to the normal force of the ground is 

! !
! = r " N ĵ = (#s î # y ĵ) " N ĵ = #s N k̂ = #(1 / 2)s mg k̂ . (23.4.25) S ,3 S ,3 N 

(In Equations (23.4.24) and (23.4.25), yL and yN are the vertical displacements of the 
point where the weight of the leg and the normal force with respect to the point S ; as 
can be seen, these quantities do not enter directly into the calculations.) 
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The condition that the total torque about the point S vanishes, 

!
!
 =
 

!
!
 +
 

!
!
 +
 

!
!


!
 
=
 S , total S ,1 S , 2 S ,3 0 , (23.4.26)
 

then becomes 

! 
d F sin! k̂ + (1 / 10)x mg k̂ " (1 / 2)s mg k̂ = 0 . (23.4.27) 

The torque equation to be used is then 

d F sin! + (1 / 10)x mg " (1 / 2)s mg = 0 (23.4.28) 

The three equations in the three unknowns are summarized below: 

! F sin" + T cos# = 0 
(2 / 5)mg ! F cos" + T sin# = 0 (23.4.29) 

d F sin" + (1 / 10)x mg ! (1 / 2)s mg = 0. 

The horizontal force equation, the first in (23.4.29), implies that 

F sin ! = T cos " . (23.4.30) 

Substituting this into the torque equation, the third of (23.4.29), yields 

d T cos! + (1 / 10)x mg " s(1 / 2)mg = 0 . (23.4.31) 

It is essential that you understand that Equation (23.4.31) is the equation that would have 
been obtained if we had chosen the contact point between the tibia and the femur as the 
point about which to determine torques. Had we chosen this point, we would have saved 
one minor algebraic step. ! 
We can solve this Equation (23.4.31) for the magnitude T of the force T of the patellar 
ligament on the tibia, 

s(1 / 2)mg ! (1 / 10)x mg 
T = . (23.4.32) 

d cos" 

Inserting numerical values into Equation (23.4.32), 

(3.6# 10"1m)(1/2) " (1/10)(1.8# 10"1m) "2 )T = (70kg)(9.8m ! s 
(3.8# 10"2 m)cos(40°) (23.4.33) 

= 3.8 # 103 N. 
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! 
b) We can now solve for the direction ! of the force F of the femur on the tibia as 
follows. Rewrite the two force equations in (23.4.29) as 

F cos! = (2 / 5)mg + T sin" 
(23.4.34) 

F sin! = T cos". 

Dividing these equations yields 

F cos! (2 / 5)mg + T sin" 
= cotan! = , (23.4.35) 

F sin! T cos" 

And so 

$ (2 / 5)mg + T sin# ' 
! = cotan "1 

&% T cos# () 
(23.4.36) 

$ (2 / 5)(70kg)(9.8m * s "2 ) + (3.4 + 103 N)sin(40°)' 
! = cotan "1 = 47°.& )% (3.4 + 103 N)cos(40°) (

c) We can now use the horizontal force equation to calculate the magnitude F of the ! 
force of the femur F on the tibia from Equation (23.4.30), 

(3.8 ! 103 N)cos(40°)F = = 4.0 ! 103 N . (23.4.37) 
sin(47° ) 

Note you can find a symbolic expression for ! that did not involve the intermediate 
numerical calculation of the tension. This is rather complicated algebraically; basically, 
the last two equations in (23.4.29) are solved for F and T in terms of ! , ! and the 
other variables (Cramer’s Rule is suggested) and the results substituted into the first of 
(23.4.29).  The resulting expression is 

(s / 2 " x / 10)sin(40°) + ((2d / 5)cos(40°)) 
cot! = 

(s / 2 " x / 10)cos(40°) (23.4.38) 
2d / 5 

= tan(40°) + 
s / 2 " x / 10 

which leads to the same numerical result, ! = 47 ° . 
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Appendix 23.A The Torques About any Two Points are Equal for a 
Body in Static Equilibrium 

When the net force on a body is zero, the torques about any two points are equal. To 
show this, consider any two points A and B . Choose a coordinate system with origin O !!and denote the constant vector from A to B by , . Suppose a set of forces Fi are rA B 

!acting at the points rO,i , i = 1, 2, ... . The vectors from the point A to the points where the 
! !respective forces act are denoted by rA,1 ,rA,2 ,... , and the vectors from the point B to the 

! !points where the forces act are denoted by rB,1 , rB,2 , ... . Note that (Figure 23.A.1) for each 
point i = 1, 2, ... , 

! ! ! rA i , = r , + rB i . (23.A.1) A B , 

Figure 23.A.1 Location of a body i with respect to the points A and B . 

Then the total torque about the point A is given by 

! ! i=N !! ! ! ! 
$A, total = rA,1 ! F1 + rA,2 ! F2 + " " " = #rA i , ! Fi . (23.A.2) 

i=1 

The total torque about the point B is given by 

! ! i=N !! ! ! ! 
$B, total = rB,1 ! F1 + rB,2 ! F2 + " " " = #rB i , ! Fi . (23.A.3) 

i=1 

We can now substitute Equation (23.A.1) into Equation (23.A.2) and find that 

i=N ! i=N ! i=N ! i=N !! ! ! ! ! ! 
# , total = rA i , ! Fi = (rA B + r , )! Fi = rA B , ! Fi + "r , ! F . (23.A.4) A " " , B i " B i i 

i=1 i=1 i=1 i=1 

!In the next-to-last term in Equation (23.A.4), the vector , is constant and so may be rA B 

taken outside the summation, 
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i=N ! i=N !
 
"r 
! 
A B , ! Fi = r ! , ! F . (23.A.5)
 A B " i 

i=1 i=1 

We are assuming that there is no net force on the body, and so the sum of the forces on 
the body is zero, 

i=N ! ! 
r ! A B , !"Fi = 0 . (23.A.6) 

i=1 

Therefore the torque about point A , Equation (23.A.2), becomes 

i=N !! ! !
#A, total = "rB i , ! Fi = #B, total . (23.A.7) 

i=1 

For static equilibrium problems, the result of Equation (23.A.7) tells us that it does not 
matter which point we use to determine torques. In fact, note that the position of the 
chosen origin did not affect the result at all. Choosing the point about to calculate 
torques (variously called “ A ”, “ B ”, “ S ” or sometimes “ O ” in these notes) so that 
unknown forces do not exert torques about that point may often greatly simplify 
calculations. 

Later in these notes, we will want to consider rigid bodies that may be accelerating, so 
that in Equation (23.A.6) we would need to replace the sum of the forces by the product 
of the total mass and the vector acceleration, with interesting results. 

22 



  

  
 

 
 
 

    
 
 
 

             
 
 

MIT OpenCourseWare 
http://ocw.mit.edu 

8.01SC Physics I: Classical Mechanics 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

1 


