
   
   

 
     

 
            

           
 

         
 

             
             

 
 

            
 

              
 
 

   
 

           
           

            
    

 
                

             
    

 
              

             
             

 
 

            
             

               
                  
              

          
 
 
 
 

One Dimensional Kinematics
 
Challenge Problem Solutions
 

Problem 1: One-Dimensional Kinematics: 

Two stones are released from rest at a certain height, one after the other. 
a) Will the difference between their speeds increase, decrease, or stay the same? 

b)	 Will their separation distance increase, decrease, or stay the same? 

c)	 Will the time interval between the instants at which they hit the ground be smaller 
than, equal to, or larger than the time interval between the instants of their 
release? 

d)	 Plot the speed vs. time for both balls in the same plot. 

e)	 Plot the position vs. time of the two balls in the same plot. 

Problem 1 Solutions: 

a) Neglecting air friction and other forces, both stones will accelerate with the same 
constant magnitude of acceleration, the acceleration due to gravity. In any time interval, 
the stones will increase their speeds by the same amount; the difference between their 
speeds will stay the same. 

b) While the difference between the speeds will be a constant, the speeds will not be the 
same at any time; the stone released first will be always moving faster, and hence the 
separation between the stones will increase. 

c) The time for either stone to hit the ground is determined solely by the height from 
which it is dropped, and has nothing to do with the other stone. The time interval 
between the release times will be the same as the time interval between the times when 
they hit. 

d) We must first introduce some symbols to express various physical quantities. Suppose 
both balls are dropped from a height h. Suppose ball one is dropped at time t = 0 and 
ball two is dropped after a time interval t1 has elapsed. Denote the instant ball one hits 
the ground by t2 . Provided that the balls do not collide, denote the instant ball two hits 
the ground by t3 = t2 + t1 . In the figures below, plots of the graphs of speed vs. time, y-
component of velocity vs. time, and position vs. time are shown. 



 
 

 
 

            
 

               
    

 
             
     

 
            

              

e) 

Note a possible collision is shown on the last plot of position vs. time shown above. 

From the speed vs. time plot, we can see that when both balls are in the air, the difference 
between their speeds stay the same. 

From the position vs. time plot, we can see that the distance between the balls increases 
while both balls are in the air. 

Again from the position vs. time plot, we can see that the time interval between when the 
balls hit the ground is the same as the time interval between when the balls were released. 



      
 

               
             

            
                

 
        

 
          

  
             

 
      

 
          

 
            

 
            

 
            

 
 

   
 

  
 
 
 

   

 
   

 
 
 

   
 

 
 

Problem 2: Bus stop 

A bus leaves a stop at MIT and accelerates at a constant rate for 5 seconds. During this 
time the bus traveled 25 meters. Then the bus traveled at a constant speed for 15 seconds. 
Then the driver noticed a red light 18 meters ahead and slams on the brakes. Assume the 
bus decelerates at a constant rate and comes to a stop some time later just at the light. 

a) What was the initial acceleration of the bus?
 

b) What was the velocity at the bus after 5 seconds?
 

c) What was the braking acceleration of the bus? Is it positive or negative?
 

d) How long did the bus brake?
 

e) What was the distance from the bus stop to the light?
 

f) Make a graph of the position vs. time for the entire trip.
 

g) Make a graph of the velocity vs. time for the entire trip.
 

h) Make a graph of the acceleration vs. time for the entire trip.
 

Problem 2 Solutions: 

1 2K1x1 2 
a1t1

2 ! a1 = 
t1
2 

= 
a) 

21 25m 
a1 =

( ( )) " 2m % = 2 m !1 = a1t1 = (5s) = 10 
m 

' (5s)2 s #$ s2 & s 

b) use t=0: 

" %x2 = !1t2 = 10 
m
s & 

(15s) = 150m' #$ 

c+d) reset t=0 
1 2x3 = !1t3 + 
2 
a3t3 

v3 = a3t3 + !1 



   
 

  

  

  

 

  

 

  

 
  
 

 

 
 

at end !3=0 " 

#!1!1 + a3t3 = 0 " t3 = 
a3 

# "!1 & 1 # "!1 & 
2

1 !1
2 

= "x3 = !1 ( + 
2 
a3 a3 

($% $% ' 2 a3a3 '

# &21 " 1 # 1&
( 

s 
18m 

(10 m )2 

%a3 = ! = 
$% 
! ( = !2.8 

m 
( s22 x3 2' % 

$ ' 

!" 1 

!2.8 m s2 

!10 m s t3 = = = 3.6s 
a3 

xtotal = x1 + x2 + x3 = (25m) + (150m) + (18m) = 193m 

e/f/g) 



   
 

           
            

          
              

             
               

             
        

               
    

 

 
 
 

    
 

           
            

             
              
            
            

         
 

             
 

 
  

  

 
  

       
 

             

       
 

Problem 3 

A person of given mass m is standing on a scale in an elevator in Building 24. Initially 
the elevator is at rest. The elevator then begins to ascend to the sixth floor, which is a 
given distance h above the starting point. The elevator undergoes an unknown constant 
acceleration a for a given time interval t1 . Then the elevator moves at a constant velocity 
for a time interval !t2 = 4t1 . Finally the elevator brakes with a deceleration of the same 
magnitude as the initial acceleration for a time interval !t3 = t1 until stopping at the sixth 
floor. Assume the gravitational constant is given as g . Find the magnitude of the 
acceleration. Briefly explain how you intend to model this problem and write down your 
strategy for solving it. Estimate the height h and the time interval t1 and check if your 
answer makes sense. 

Problem 3 Solution: 

There are three stages of motion, corresponding to the three parts of the graph given in 
the problem. The initial and final stages are at constant acceleration and the intermediate 
stage is at constant velocity. The key link between the stages is that the final speed after 
the first stage is the constant speed during the intermediate stage, and the initial speed for 
the final stage. I can write down the equations for displacement for each stage noting that 
the final speed after the first stage is the constant speed during the intermediate stage, and 
is the initial speed for the final stage. 

After the time interval t1 , the elevator has an upward speed and displacement given by 

2y = y t( ) = (1 / 2) at ,1 1 1 (4.3.1) 
v = v t( ) = at1 1 1 

where a is the unknown acceleration. 

During the second stage, the elevator travels at a constant speed v1 = at1 for a time 

interval t2 = 4t1 , traveling a distance y2 = v1 t2 = 4 at1
2 . 



                
          

 
 

    
 

              
       

 
     
 

   
 

 
  

  

 
                

           

        
 

 
   

  

 
            

              
              

  
 

For the third stage, the initial speed is v1 = at1 and the constant acceleration is !a , and 
the distance traveled is during the time interval !t3 = t1  is 

2 2y3 = (at1 )t1 ! (1 / 2)at1 = (1 / 2)at1 . (4.3.2) 

The total distance is the sum of the distances traveled in the three stages, and is equal to 
the height h of the building, 

h = y1 + y2 + y3 = (1 / 2)at1
2 + 4 at1

2 + (1 / 2)at1
2 = 5at1

2 . (4.3.3) 

Solving for the acceleration gives 

h . (4.3.4)a = 
5t1

2 

Let’s assume that the sixth floor of building 24 is about h ! 25 m above the ground. This 
happens to be the slowest elevator at MIT taking approximately 30 s to reach the top so 
t1 ! 5 s . Therefore the acceleration is 

25 m 
= 0.2 ms-2 (4.3.5)a ! 

(5)(5 s)2 

This number is reasonable, I barely notice that the elevator is accelerating when I ride in 
the elevator. Notice that as longer as the magnitudes of the initial and final accelerations 
are equal, the elevator will always accelerate for 2.5 m no matter how long the journey 
takes. 



   
 

                
             

         
               

            
 

 
 

    
 

                
 

 
                

              
               

             
            

              
           

     
 

         
 

 
  

  

               
  

 

      
 
     
 

            
 
     
 

              
 
 

    
 

Problem 4 

A ball is released from rest at a height h  above the ground. The ball collides with the 
ground and bounces up at 75% of the impact speed the ball had with the ground. The 
collision with the ground is nearly instantaneously. A second ball is released above the 
first ball from the same height the instant the first ball loses contact with the ground. 
Calculate the time when the two balls collide and show where the collision occurs on the 
graph. 

Problem 4 Solution: 

Suppose ball one is dropped at time t = 0 . Denote the instant ball one hits the ground by 
t2 . 

We first need to calculate how long it takes for the first ball to hit the ground. Then we 
can calculate the y- component of the velocity of the first ball when it hit the ground. 
Since the ball rebounds with 75% of the speed it hit the ground, we know the y-
component of the velocity of the first ball the instant it starts back upward. We also need 
to calculate the position and y- component of the velocity of the second ball the instant 
the first ball hits the ground. At this point we can restart our clock and using our 
kinematic equations for both balls, to determine the instant that they collide, and hence 
the height above the ground. 

The equation for the position of the first ball is given by 

y(t) = h ! 
1 gt2 (4.4.1)
2 

1 gt2
2When the ball hits the ground at time t2 , y(t2 ) = 0 , so Eq. (4.4.1) becomes 0 = h ! 

2 
which we can solve for t2 : 

t2 = 2h / g (4.4.2) 

The equation for the y-component of the velocity of the first ball is given by 

vy (t) = !gt (4.4.3) 

So the y-component of the velocity of the first ball when it hits the ground is 

vy (t2 ) = !g 2h / g = ! 2hg (4.4.4) 



            
 

 

 
  

  

 
               

            
      

 
             
                

       
 
     
 

        
 
     
 

        
 

 
  

  

 
       

 

 
  

  

 
        

 

   

 
        

 

 
  

  

 
            

 
     

Immediately after the first ball rebounds from the ground, the y-component of the 
velocity is 

3 v = 2hg (4.4.5)y10 4 

Throughout the remainder of the problem we shall neglect the time interval that the first 
ball collided with the ground. We base this assumption on the fact that the collision 
occurred very rapidly on the order of milliseconds. 

The second ball is released the instant the first ball loses contact with the ground. We 
shall now restart our clock (set t = 0 ) the instant the first ball loses contact with the 
ground. At that instant, the position of the second ball is 

= h (4.4.6)y20 

and the y-component of the velocity of the second ball is 

v2 y0 = 0 (4.4.7) 

The equation for the position of the first ball is 

y1(t) = vy10 t ! 
1 gt2 (4.4.8)
2 

Equation (4.4.8) becomes after substituting of Eq. (4.4.5) 

3 y1(t) = 2hg t ! 
1 gt2 (4.4.9)

4 2 

The equation for the position of the second ball is 

1 2y2 ( ) t = y20 + vy 20 t ! gt (4.4.10)
2 

which becomes after substituting Equations (4.4.6) and (4.4.7) 

y2 (t) = h ! 
1 gt2 (4.4.11)
2 

Denote the instant the two balls hit by th . Then 

y2 (th ) = y1(th ) (4.4.12) 



 
           

 

 
  

  

 
  

 

 
  

  

 
      

 

 
  

  

 
              

 

 
  

  

 
           

     
 

 
  

  

 
            

       
 

We now substitute Eq. (4.4.11) and Eq. (4.4.9) into Eq. (4.4.12) to get 

1 gth 
2 = 

3h ! 2hg th ! 
1 gth 

2 (4.4.13)
2 4 2 

which simplifies to 

3h = 2hg th (4.4.14)
4 

This equation can be solved for time th 

th = 
8h / g 

3 
(4.4.15) 

The time elapsed from the instant the first ball was dropped is then 

8h / g 
3 

5 t = 2h / g + = 2h / g (4.4.16)c = t2 + th 3 

Although the problem did not specifically ask for this, we note that the collision took 
place at a height 

1 2 1 8h 5 y (t ) = h ! gt = h ! g = h (4.4.17)2 h 2 h 2 9g 9 

The position vs. time for each ball is plotted in the figure below. The point of intersection 
of the two plots corresponds to the collision. 



 
 
 



   
 

         

          
          

  
 

         
            

         
            

         
 

        
      
             
      

 
   

 
             

            
            

               
        

 
             

             
              

              
              

         

Problem 5 

A person starts running with a constant velocity trying to catch a streetcar that is initially 
2.0 ! 101 m away from the person and has just started to accelerate from rest with a 
constant acceleration of 0.9 m ! s "2 . The person runs just fast enough to catch the streetcar 
and hop on. 

a)	 Describe the strategy you have chosen for solving this problem. You may want to 
consider the following issues. What does a sketch of the problem look like? What 
type of coordinate system will you choose? What information can you deduce 
from a plot of distance vs. time for both the person and the streetcar? What 
conditions must be satisfied when the person just catches up to the streetcar? 

b)	 Now show all your work in answering the following three questions. 
i) How long did the person run? 
ii) What is the speed of the person when they just caught up to the streetcar? 
iii) How far did the person run? 

Problem 5 Solutions: 

a) This is a one-dimensional situation, with only one useful coordinate. Take the 
direction of the streetcar and the person to be the positive direction, with origin at the 
position where the person just starts to run. In order to satisfy the conditions of the 
problem, the person must be at the same position of the streetcar at the same time and 
running at the same speed as that of the streetcar. 

In the figure below, the parabolic curve (the red curve if you’re seeing this in color) 
represents the position of the streetcar as a function of time and the straight line (green) 
represents the position of the running person. The straight line is drawn from the origin 
and tangent to the parabola. Where the curves are tangent they have the same slope, and 
hence the streetcar and the running person have the same velocity. From the curve, it is 
seen that the time when this happens is between six and eight seconds. 



 
 

          
             

           
             

        
 

 

  

  

 
            

  
 

          
 

 
 

 

  

  

 
      

   
   

 

b) Treating the parameters symbolically might give further insight into this and other 
similar problems. Specifically, let the original position of the streetcar be x0,car and the 
constant speed of the person be v , and let the streetcar’s constant acceleration be a .person

Taking t to be the time since the person has started to run, the positions of the streetcar 
and the person, and the speed of the streetcar are 

1 
at2x car = x0,car + 

2 
= at (4.5.1)vbus 

x = v t. person person 

For the person to just catch the streetcar, there must be some time tcatch at which 
x = x and v = v . From the equations, these conditions are expressed person car person car 

algebraically as 

1 2v person tcatch = x0, car + atcatch 2 (4.5.2) 
at = v .catch person 

The second of the equations is readily solved for tcatch = v / a , and substitution into person 

the first yields 
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v 1 

0,car 

v person person 

a 
+
 #

"

&
%
 

v = x a
2
person a 

1 v
2 
person (4.5.3)= x0,car 2 a 

v = person 2a x0,car . 

We can now answer the questions asked in part b): 

i) Substituting the last equation into tcatch / a gives = vbus 

=
 
2a x0,car 

a 
=
 

2 xv 0,car .person (4.5.4)
t = catch a a 

Inserting the numerical values gives 

tcatch = 
2 2.0 ! 101 m( ) 

0.9 m " s#2 = 6.7s . (4.5.5) 

ii) The speed of the person is found from the last equation 

v person = 2 0.9 m ! s "2( ) 2.0 # 101 m( ) = 6.0m ! s "1 . 

Of course, using v person = atcatch gives the same result. 

iii) 

(4.5.6) 

xcatch = v person tcatch 

= 2a x0,car 

2 x0,car 

a (4.5.7)
 
= 2 x0,car 

= 4.0 ! 101 m. 

It should be noted that running 40m in under seven seconds is pretty good. 



   
 

          
              

              
                

             
                 

                
         

             
 
 

    
 

             
              

               
         

          
        
               

              
 
   
 
   
 

             
 
   
 

  
 
   
 

            
 

 
   
 

   
           
             

Problem 6 

A motorist traveling with constant speed of 15 m/s passes a school-crossing corner, 
where the speed limit is 10 m/s. Just as the motorist passes, a police officer on a 
motorcycle stopped at the corner (x = 0) starts off in pursuit. The officer accelerates from 
rest at ax = 2.5 m/s2 until reaching a speed of 20 m/s. The officer then slows down at a 
constant rate until coming alongside the car at x = 360 m, traveling with the same speed 
as the car. a) How long does it take for the officer to catch up with the motorist? b) How 
long does the officer speed up? c) How far is the officer from the corner and from the car 
when switching from speeding up to slowing down? d) What is the acceleration of the 
officer when slowing down? e) Draw an x-t graph and a vx-t graph for the two vehicles. 

Problem 6 Solution: 

Part a) of this problem can be very easily solved because the distance from the starting 
point where the motorcycle comes alongside the car is specified. The problem is more 
interesting if we do not specify that distance but solve for it. So I will first solve it with 
the distance x = 360 m as part of the given information. 

A coordinate system has already been chosen in the problem statement with the origin 
located at the school-crossing corner and the positive x-axis pointing in the direction of 
motion of the moving car. Introduce a coordinate function for the car xc (t) . The car is not 
accelerating, so our model for the motion of the car is ac = 0 . Two integrations yield 

vc (t) = vco (4.6.1) 

xc (t) = xco + vcot . (4.6.2) 

The car started at the origin but had a non-zero initial x-component of the velocity so 

xc10 = 0, vc10 = 15 m ! s-1 . (4.6.3) 

So Eq(4.6.2) becomes 

xc (t) = vcot . (4.6.4) 

At the instant t = t f , xc1(t f ) = 360 m , therefore we can solve Eq. (4.6.4) for t = t f 
yielding 

t f = xc1(t f ) / vc10 = (360 m)/(15 m ! s-1 ) = 24 s . (4.6.5) 

Part b) 
Part b) The problem involves two objects, the motorcycle and the car. The 

motorcycle has two distinct stages of motion, stage one occurs during the interval 



            
             

            
           

      
 

          
 

 
           

         
          

 
 
   
 
   
 
              

 
 
   
 

       
 
 
   
 
   
 
 

                 
          

        
 
   
 

           
     

 
   
 

       

0 < t < t1 where t1 represents the instant the motorcycle started to slow down. Stage two: 
occurs during the interval t1 < t < t f . During stage one the motorcycle speeds up at a 
constant rate i.e. the magnitude of the acceleration is constant and its direction is in the 
direction of motion. During stage two the motorcycle slows down at a constant rate 
which also implies constant acceleration in the opposite direction. 

We begin by considering stage one. Introduce a coordinate function for the motorcycle 
xm1(t) . 

We model the acceleration of the motorcycle by noting that the problem statement 
states the acceleration of the motorcycle am1 = 2.5 m ! s-2 and hence is constant, therefore 
by two integrations we can get both the velocity and position component functions for the 
motorcycle, 

vm1(t) = vm10 + am1t (4.6.6) 

xm1(t) = xm10 + vm10t + 12 am1t
2 (4.6.7) 

From the given information we note that since the motorcycle started at the origin form 
rest 

xm10 = 0, vm10 = 0 (4.6.8) 

Therefore Eqs. (4.6.6) and (4.6.7), become considerably simpler 

vm1(t) = am1t (4.6.9) 

xm1(t) = 2
1 am1t

2 (4.6.10) 

At the end of the first stage of motion, at the instant t = t1 , we are informed that the 
motorcycle has a x-component of the velocity given as vm1(t1) = 20 m ! s-1 . Therefore we 
can solve Eq. (4.6.9) for the time t1 

t1 = vm1(t1) / am1 = (20 m ! s-1 )/(2.5 m ! s-2 ) = 8 s . (4.6.11) 

part c) Substituting t = t1 into Eq. (4.6.10) and using Eq. (4.6.11) we can determine how 
far the officer traveled while speeding up 

1 2 1xm1(t1) = 2 am1t1 = 2 (2.5 m ! s-2 )(8!s)2 = 80 m (4.6.12) 

Similarly, the car has traveled at distance 



 
 
   
 

      
 
    
 
 

              
              

            
            

           
        

 
 
   
 

        
 
 
   
 
   
 

           
          

       
 

   

 
 

              
          

 

   

xc (t1) = vcot1 = (15 m ! s-1 )(8!s) = 120 m (4.6.13) 

So the officer is a distance 

d = xc (t1) ! xm1(t1) = 120 m - 80 m = 40 m . (4.6.14) 

For stage two of the motion we will reset our clock to t = 0 , noting that the final 
conditions of stage one are the intial conditions of stage two. Introduce new coordinate 
functions for the motorcycle xm2 (t) and the car xc2 (t) .We model the acceleration of the 
motorcycle by noting that the problem statement states the motorcycle is slowing down at 
a constant rate, therefore the acceleration of the motorcycle am2 < 0 and is constant. The 
initial conditions for the motorcycle at stage two are 

xm20 = 80 m, vm20 = 20 m ! s-1 (4.6.15) 

By two integrations we again can get the velocity and position for the motorcycle, 

vm2 (t) = vm20 + am2t (4.6.16) 

xm2 (t) = xm20 + vm20t + 12 am2t
2 (4.6.17) 

We note that stage two takes place during an interval 0 < t < t2 = t f ! t1 = 16 s . We know 
the the final position of the motorcycle xm2 (t2 ) = 360 m so we can apply Eq. (4.6.17) 
with t = t2 = 16 s and solve for the acceleration of the motorcycle 

" 2(xm2 (t2 ) ! xm20 ! vm20t2 )% =am2 2 ' #$ t2 & 
(4.6.18)

2 (360 m) ! (80 m) ! (20 m ( s-1 )(16 s) )%" (
= ' = !0.3125 m ( s-2 $ (16 s)2# & 

Equivalently, we were told that the motorcycle and the car have the same speed at 
t = t2 = 16 s , therefore Eq. (4.6.16) can be solved for the acceleration of the motorcycle 

vm2 (t2 ) ! vm20 (15 m " s-1 ) ! (20 m " s-1 )am2 = = = !0.3125 m " s-2 (4.6.19)
t2 (16 s) 



 
               

 
 

 
 

 
 
 
 

A vx (t) vs. t and x(t) vs. t for both objects for the interval 0 < t < 24 s are shown 
below. 



   
 

         
             

             
          

        
           

 
             

 
 
 

          
             
   

 

 
 

           
        

     

 
  

 

 
 

Problem 7 

The scene opens with a mosquito on the line between two approaching hands that are 
initially a distance D apart. The mosquito is a distance s from the left hand which 
moves toward the right hand at a speed vL . The right hand moves towards the left hand at 
speed vR . If the mosquito flows towards the left hand at speed vM , then reverses 
direction back toward the right hand at the last instant to avoid being struck by the left 
hand, how far does the mosquito fly before it is killed? 

Be sure to clearly outline your strategy so that someone else can apply it to solve the 
problem. 

Problem 7 Solution: We begin by assuming that the mosquito is killed when it just 
reaches the right hand. (This collision will probably not kill the mosquito but we will 
assume so anyway.) 

We will divide the motion of the hands and the mosquito into two stages (Figure 2.1 and 
2.2), when the mosquito travels towards the left hand and when the mosquito travels 
towards the right hand. 

Figure 2.1 



  
 

                 
              

            
          

              
              

               
             

   
 

 
 

  
 

          
 

      

       

       
 

        
 

    

     

     
 

          
 

   
 

 
 

Figure 2.2 

Let t1 denote the time the mosquito just reaches the left hand. Let t2 denote the time the 
mosquito just reaches the right hand; stage one: 0 ! t ! t1 , stage two t1 ! t ! t2  . We will 
model the motion of all three objects by noting that their accelerations are all zero. By 
choosing an origin at the location of the left hand at time t =0 and positive x-direction to 
the right as shown in the Figure 2.1, we can use our kinematic equations to describe all 
three objects. We must take some care to get the initial conditions correct for each stage, 
noting that the final conditions for stage one are the initial conditions for stage two. We 
also show a graph of x vs. t for the motion of each object for the combined stages in 
Figure 2.3. 

Figure 2.3 

Stage one 0 ! t ! t1 : The initial conditions are 

mosquito: xM 0 = s , v = !vMx , M 0 

left hand: xL0 = 0 , v = vLx , L0 

right hand: xR0 = D , vx ,R0 = !vR .
 

So the equations for the position of the objects are:
 

mosquito: xM (t) = xM 0 + v t = s ! vMt
 x , M 0

left hand: xL + v t(t) = xL0 x , L0t = vL

right hand: xR (t) = xR0 + vx ,R0t = D ! vRt 

The condition that the mosquito just reaches the left hand at time t1  is 

xM (t1) = xL (t1) 

which becomes 



   
 

    

  
 

 
           

  
 

 
        

 

  
 

 
        

 

  
 

 
                 
           

 
    

 

 
  

   

  
  

   

 
          

 

 
  

 

  
  

 

 
         

 

s ! vMt1 = vLt1 

Solving for time t1 yields: 
s .t1 = 

vM + vL 

The position of the mosquito and the left hand at time t1 is then 
s .xM (t1) = xL (t1) = vLt1 = vL vM + vL 

The position of the right hand at time t1  is 

s .xR (t1) = D ! vRt1 = D ! vR vM + vL 

Note that the mosquito has traveled a distance 

s s
d1 = !xM = xM (t1) " xM 0 = vL " s = vM . 

v + v v + vM L M L 

Stage 2 t1 ! t ! t2 : Let’s reset our clocks to t = 0 when the stage begins. Let t2 ! t1 = t f 

denote the time it takes for the mosquito to reach the right hand. 

The initial conditions are 

smosquito: xM 0 = vL , v = vMx , M 0vM + vL 

sright hand: xR0 = D ! vR , vx ,R0 = !vR . vM + vL 

So the equations for the position of the mosquito and the right hand are: 

smosquito: xM + v + vMt(t) = xM 0 x , M 0t = vL vM + vL 

sright hand: xR (t) = xR0 + v t = D ! vR ! vRt x , R0 vM + vL 

The condition that the mosquito just reaches the right hand at time t f  is 



   
 

 
 

 
 

 
    

 

  
 

 
   

 

  
 

 
       

 

  
 

xM (t f ) = xR (t f ) 

which becomes 

s s 
+ vMt f = D ! vR ! vRt fvL vM + vL vM + vL 

Solving for time t f yields: 

1 " s s % 
t f = D ! vR ! vL ' . v + v #$ v + v v + v &M R M L M L 

During stage two the mosquito traveled 

vM 
" (vR + vL )s% d2 = xM (t f ) ! xM 0 = vMt f = ' . v + v #$ 

D ! 
v + v &M R M L 

So the total distance the mosquito traveled is equal to 

s vM 
" (vR + vL )s% +d = d1 + d2 = vM ' . v + v v + v #$ 

D ! 
v + v &M L M R M L 



  
 

          
         

            

              
    

 
        

 
       

 
             

 
              

 
          

          
 

 
     

 
         

 
 

    
 

          
 

    

   
 

     
 

      
 

   

 

   

 

Problem 8 

During a track event two runners, Bob and Jim, round the last turn and head into the final 
stretch with Bob 2.0m in front of Jim. They are both running with the same 
speed 8.0m ! s "1 . When the finish line is 4.8 ! 101 m away from Jim, Jim accelerates at 
1.0m ! s "2 until he catches up to Bob. Jim then continues at a constant speed until he 
reaches the finish line. 

a) Describe the strategy you have chosen for solving this problem 

b) How long did it take Jim to catch Bob? 

c) How far did Jim still have to run when he just caught up to Bob? 

d) How long did Jim take to reach the finish line after he just caught up to Bob? 

Bob starts to accelerate when Jim just catches up to him, and accelerates all the way to 
the finish line and crosses the line exactly when Jim does. Assume Bob’s acceleration is 
constant. 

e) What is Bob’s acceleration? 

f) What is Bob’s velocity at the finish line? Who is running faster? 

Problem 8 Solutions: 

Choose t=0, when Jim starts to accelerate. Choose origin at Jim. Then 

Jim Accelerates: xJ = !0, Jt + 
2
1 
aJt

2 

Bob constant velocity: xB = xB,0 + !0, Bt 

With: xB,0 = d 

Jim catches Bob when at t = t1, xJ = xB 

!O, J " t1 + 
2
1 aJt

2 = d + !O,Bt1 (4.8.1)1 

1 

2 
aJt1

2 + (!O, J "!O, B )t1 " d = 0 (4.8.2) 



   

  
   

 

   

 
       

 

   

 
  

 
              

 
   
 
 

t 2 
1 + 

2 

aJ 
!O,J " !1, B( )t1 " 

2d 

aJ 
= 0 (4.8.3) 

Solve for t1: 

t1 = 
!2 

aJ 

" O, J ! " O, B( ) ± 
2 
aJ 

" O, J ! " O, B( )2 
+ 
8d 
aJ 

# 
$% 

& 
'( 

1 2 

2 
(4.8.4) 

Choose the positive square root so that t1 > 0 

t1 = 
!2 

aJ 

" O, J ! " O, B( ) + 
2 
aJ 

" O, J ! " O, B( )2 
+ 
8d 
aJ 

# 
$% 

& 
'( 

1 2 

2 
(4.8.5) 

Calculate: xB = d + !O, Bt1 = xJ t1( ) 

The finish line is distance s ! xB (t1 ) . Jim is running at a constant velocity: 

! J = ! J ,O + aJ t1 (4.8.6) 



     
 

   

 
           

 

   

 
 

 

   

 
 

 
   
 

 
 
 

     
 
   
 

 
            
       

So it takes Jim a time 

s ! xB ( ) t1 s ! d !" O, Bt1 (4.8.7)t2 = = 
" J " J ,O + aJt1 

to reach the finish line. Now Bob accelerates and reaches the finish line in the time t2. 

1 
s ! xB t1( ) = " Bt2 + 

2 
aBt2 

2 (4.8.8) 

Solve 

aB = 
2 

t2 
2 
s ! xB t1( ) ! " Bt2( ) (4.8.9) 

where 

xB t1( ) = d + !O, Bt1 (4.8.10) 

t1  and t2  are above 

The final velocity of Bob is 

!B (final) = !B,O + aBt2 (4.8.11) 

From the graph, the slope of Bob’s position function at the finish line is greater than 
Jim’s. Bob is running faster at the finish. 
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