Translation and Rotation
Kinematics



Overview: Rotation and
Translation of Rigid Body
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Thrown Rigid Rod

Translational Motion: the gravitational external force
acts on center-of-mass

Fext _ dl_jsys _ mtotal chm _ mtotalA’
dt dt -
Rotational Motion: object rotates about center-of-
mass. Note that the center-of-mass may be

accelerating




Overview: Rotation about the
Center-of-Mass of a Rigid Body

The total external torque produces an angular acceleration
about the center-of-mass
,—text — [ &’ — chm

cm cm Ccm d t

7 is the moment of inertial about the center-of-mass

cm

o 'S the angular acceleration about the center-of-mass
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[, s the angular momentum about the center-of-mass
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Fixed Axis Rotation

« CD is rotating about
axis passing through r
the center of the disc

and is perpendicular to A !
the plane of the disc. S v

« For straight line motion,
bicycle wheel rotates
about fixed direction
and center of mass is
translating




Review: Relatively Inertial
Reference Frames

Two reference frames. object i.’

Origins need not coincide.

One moving object has different
position vectors in different frames

frame 1

I =R+T,
Relative velocity between the two reference frames
V = dR/dt

IS constant since the relative acceleration is zero
A=dV/dt=0



Review: Law of Addition of
Velocities

Suppose the object is moving; then, observers in
different reference frames will measure different
velocities

Velocity of the object in Frame 1: v, =dr, /dt
Velocity of the object in Frame 2: v, =dr, /dt

Velocity of an object in two different reference
frames i, R T,




Center of Mass Reference Frame

Frame O: At rest with respect to i" particle
ground r

Frame O_,.: Origin located at center
of mass

frame O
Position vectors in different frames: _
i:l':i: +ﬁ rcm,i:ri_Rcm

cm,i cm

Relative velocity between the two
reference frames ~ _
V =dR /dt A =dV_/dt=0
Law of addition of velocities:

i;i = ch ] T ch ch’i = Vi - ch



Rolling Bicycle Wheel

reference frame j
at rest with respect to center of mass reference frame
ground O ©) . ) ®
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Reference frame fixed to ground Center of mass reference frame

Motion of point P on rim of rolling bicycle wheel

—

Relative velocity of point P on rim: V,=V_ ,+V

P m, P cm



Rolling Bicycle Wheel

center of mass reference frame

Distance traveled in
center of mass
reference frame of
point P on rim in time

At:
— — reference frame
AS - RAQ - Ra)CmAt at rest with respect to .
. ground O J
Distance traveled & T
in ground fixed k —1
Y ,P

reference frame
of point P on rim
In time At:

AXCHI _ch At AR, ()=V._Ari




Rolling Bicycle Wheel:
Constraint relations

Rolling without slipping:

As = AX_
chm — ‘/cm

Rolling and Skidding
As < AX__

chm < ‘/Cm

Rolling and Slipping
As > AX__

Ra)CIIl > ‘/cm

center of mass reference frame

Iy
i

As = Ro At

reference frame
at rest with respect to
ground O

| ,P

AR, (1)=V, Ari




Rolling Without Slipping: velocity
of points on the rim in reference
frame fixed to ground
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v.=vV +V
1 C
v

m,i cm

cm, A V

o o=
_ A
Vcm,D V
D
cm | B — B
e _— D o —
I p v v,
cm,B
cm Cm’C VC = 0 . . .
translational motion of center of mass rotational motion of wheel in velocity of 4 points on the rim in
of wheel center of mass reference frame reference frame fixed to ground

The velocity of the point on the rim that is in contact with
the ground is zero in the reference frame fixed to the ground.



Rotational Work-Kinetic
Energy Theorem

Change in kinetic energy of rotation about
center-of-mass
1 ) 1 )

AK =K s

ro rot, f rot,i_2 cm cm, f 2 cm  cm,i

Change in rotational and translational
Kinetic energy

AK =AK _+AK

trans rot

| | | |
AK = AK, +AKt=(—mv2 ——mv. .)+[—1 o ——I o
rans ro 2 cm, f 2 cm,i c c c



Checkpoint Problem: Cylinder on
Inclined Plane Energy Method

A hollow cylinder of outer radius R and mass m with moment of inertia | _,
about the center of mass starts from rest and moves down an incline tilted
at an angle 6 from the horizontal. The center of mass of the cylinder has
dropped a vertical distance h when it reaches the bottom of the incline. Let
g denote the gravitational constant. The coefficient of static friction
between the cylinder and the surface is . The cylinder rolls without
slipping down the incline. Using energy techniques calculate the velocity of
the center of mass of the cylinder when it reaches the bottom of the incline.

h




Checkpoint Problem:
Descending Yo-Yo

A Yo-Yo of mass m has an axle [
of radius b and a spool of radius :
R. It's moment of inertia about Pl :
the center of mass can be taken / |
to be | = (1/2)mR? and the | y
thickness of the string can be \ \
neglected. The Yo-Yo is
released from rest. What is the
angular speed of the Yo-Yo at

the bottom of its descent.
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Demo B107: Descending and
Ascending Yo-Yo

M =435¢

wheel+axle

R =6.3cm

outer

=1.385%10* g-cm”




Angular Momentum for
Rotation and Translation



Angular Momentum for 2-Dim
Rotation and Translation

The angular momentum for a rotating and translating object is given by (see
next two slides for details of derivation)

The first term in the expression for angular momentum about S arises from
treating the body as a point mass located at the center-of-mass moving with
a velocity equal to the center-of-mass velocity,

—

D — Sys
LS,crn — RS,cm Xp
The second term is the angular momentum about the center-of mass,
_ i=N
L =)r .Xmv



Derivation: Angular Momentum for
2-Dim Rotation and Translation

The angular momentum for a rotating and translating object is
given by

_ =N
L, = E‘miri XMV,
i=1

The position and velocity with respect to the center-of-mass
reference frame of each mass element is given by

— —

rr=R +r . vi:ch+ch’i

S,cm cm,i

So the angular momentum can be expressed as



Derivation: Angular Momentum for
2-Dim Rotation and Translation

i=N i=N i=N :N
Scm Z Scm>< mi cm,i+ Zmz cm1 XV ><n/li cm,1

=1 i=1
The two mlddle terms in the above expression vanish because in the

center-of-mass frame, the position of the center-of-mass is at the
origin, and the total momentum in the center-of-mass frame is zero,

i=N

Z = 6 mi cm,i = 0
tota cm1 =

=
Then then angular momentum about S becomes

Scm (Zm ) 2 cmlxmzvcml

The momentum of system is p” = [Z m, )Vm

So the angular momentum about S IS

—

—>Sys 2z
LS RS mep +2 cm1 chl



Earth’s Motion about Sun:
Orbital Angular Momentum

For a body undergoing orbital motion like the earth orbiting the sun, the
two terms can be thought of as an orbital angular momentum about the
center-of-mass of the earth-sun system, denoted by S,

L =RSCm><f)SYS—r my. Kk

S,cm s,e’ ‘e cm
Spin angular momentum about center-of-mass of earth
L, ™ =1, =>mRo
cm — Tcm spm - 5 m,Ix, spm

Total angular momentum about S

2
L“’tal—r myv k+= mR @ . NS

s,e e cm Spll’l



Earth’s Motion Orbital Angular
Momentum about Sun

Orbital angular momentum =
about center of sun Ly =r  Xp " =1, my,

Center of mass velocity and R
angular velocity cm — "s.e " orbit

. - 2” =7 -1
Period and angular velocity ey S = AUt o8

orbit

. Eorbital_ 2 . mer:v,e 2 Eorbital_267><1040k o2 _ll;
Magnitude g =mr o, K= k L™ =2 g-m s

e s,e orbit



Earth’s Motion
Spin Angular Momentum
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Spin angular momentum o ) 2
about center of mass of earth Lo.”" =1,8 . =-mR’0_ i

Period and angular velocity , = 2T _ 729%105rad - s~
spin
spin

Magnitude .
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Checkpoint Problem: Angular
Momentum for Earth
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« What is the ratio of the spin angular momentum to the
orbital angular momentum of the Earth?

« What is the vector expression for the total angular
momentum of the Earth about the center of its orbit
around the sun (you may assume the orbit is circular
and centered at the sun)?






