
    

      
   

 
      

 
             

             
               
    

 
 

                
  

 

 
 

             
 
    
 

Momentum and the Flow of Mass
 
Challenge Problems Solutions
 

Problem 1: Stream Bouncing off Wall 

A stream of particles of mass m and separation d hits a perpendicular surface with 
speed v . The stream rebounds along the original line of motion with the same speed. The 
mass per unit length of the incident stream is ! = m / d . What is the magnitude of the 
force on the surface? 

Solution: We begin by defining our system as a tube of water of cross sectional area A 
and length v!t . 

Mass Conservation: The mass of the water in this tube is given by
 

!mi = "Av!t = #v!t (1.1)
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where ! = " A = m / d is the mass per unit length . This means that all the water inside 
this tube will hit the wall during the interval [ , t t + !t] and reflect. Note that if the 
collision with the wall is elastic, the reflected water will have the same speed as the 
incident water. Otherwise to allow for a slightly more general case, we shall assume that 
the reflected water travels backwards with speed v! . We assume that the water is 
incompressible so that the density has not changed. The mass of the water that has been 
reflected is given by 

!mr = "A#v#!t = $#v#!t (1.2) 

where !# = " A# = m / d # is the mass per unit length of the reflected water . We assume 
that the water is incompressible so that the density has not changed. We shall also assume 
for simplicity that all the water incident on the wall reflects with the speed v! . Thus 

!mi = !mr . (1.3) 
Thus in the time interval 

!mi !mr= . (1.4)
!t !t 

This implies that 

!v = !"v" . (1.5) 

Note that the instantaneous rate that mass is delivered to the surface and leaves is 

"m dmdm dmi "mi r r! = lim = lim = = $v = $%v% . (1.6)
dt dt "t#0 "t "t#0 "t dt 

Momentum Principle: The momentum principle states that the impulse from the surface 
changes the momentum of the water. The momentum of the incident water is given by 

! = "mv i ̂ = (!v" ) ˆ = !v2"t i ̂ . (1.7)pi i t v i 

The x-component of the momentum of the reflected water is given by 

! pr = #$ r 
ˆ = #(!"v $ ) " ˆ = #! v"2m v i " t v i " $t i ̂ . (1.8) 

! ! 
ave ave The surface exerts an average force on the water, Fsw , hence an impulse Fsw !t . So the 

momentum principle becomes ! !Fsw
ave !t = !p . (1.9) 
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Based on our analysis of the momentum incident and reflected the momentum principle 
becomes 

! ! !ave 2 2F #t = p $ p = $!"v" #t i ̂ $!v #t i ̂ = $(!"v v " " + !vv )#t i ̂ . (1.10)sw r i 

Therefore the force of the surface on the water is 

! 
ave Fsw = #(!"v v " " + !vv ) î  . (1.11) 

We can apply our condition for mass conservation, Eq. (1.5) and find that 

! 
ave Fsw = #!v v ( " + v) î  . (1.12) 

By Newton’s Third Law the average force of the water on the surface is 

! ! 
ave ave F = #F = !v v ( " + v) î  . (1.13)ws sw 

In order to produce the maximum possible average force of water on the surface, the 
collision must be elastic since then the reflected speed is equal to the incident speed and 

! 
2 ˆ(Fws 

ave )max = 2!v i . (1.14) 

Note that the using the instantaneous rate that mass arrives or leaves the surface, we have 
that 

! 
ave ˆ dm ˆ(F ) = 2!vv i = 2 v i . (1.15)ws max dt 

So the magnitude of the force on the surface is 

! 
ave (Fws )max = 2!v2 . (1.16) 
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Problem 2 A rocket has a dry mass (empty of fuel) mr ,0 = 2 ! 107 kg , and initially carries 

fuel with mass mf ,0 = 5 ! 107 kg . The fuel is ejected at a speed u = 2.0 ! 103m " s-1 relative 
to the rocket. What is the final speed of the rocket after all the fuel has burned? 

Solution The initial mass of the rocket included the fuel is 

m = m + m = 2 ! 107 kg + 5 ! 107 kg = 7 ! 107 kg (2.1)r ,i r ,0 f ,0 

The ratio of the initial mass of the rocket (including the mass of the fuel) to the final dry 
mass of the rocket (empty of fuel) is 

mr ,i = 
7 ! 107 kgR = = 3.5 (2.2)

mr ,d 2 ! 107 kg 

The final speed of the rocket is then 

v = u ln R = (2.0 ! 103m " s-1 ) ln3.5 = 2.5 ! 103m " s-1 . (2.3)r , f 
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Problem 3: Coal Car 

An empty coal car of mass m0 starts from rest under an applied force of magnitude F . 
At the same time coal begins to run into the car at a steady rate b from a coal hopper at 
rest along the track. Find the speed when a mass mc of coal has been transferred. 

Solution: We shall analyze the momentum changes in the horizontal direction which we 
call the x-direction.. Since the coal does not have any horizontal velocity, the falling coal 
is not transferring any momentum to the coal car. So we shall take as our system the 
empty coal car and a mass mc of coal that has been transferred. Our initial state at t = 0 
is when the coal car is empty and at rest before any coal has been transferred. The x-
component of the momentum of this initial state is zero, 

px (0) = 0 . (3.1) 

Our final state at t = t is when all the coal of mass m = bt has been transferred into the f c f 

car which is now moving at speed v f . The x-component of the momentum of this final 
state is 

p + m + bt fx (t f ) = (m0 c )v f = (m0 )v f . (3.2) 

There is an external constant force Fx = F applied through the transfer. The momentum 
principle applied to the x-direction is 

t f 

F dt = "p = p ) # p (0) . (3.3)! x x x (t f x 
0 

Since the force is constant, the integral is simple and the momentum principle becomes 

Ft f = (m0 + bt f )v f . (3.4) 

So the final speed is 
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Ft fv f = . (3.5)
(m0 + bt f ) 
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Problem 4: Emptying a Freight Car 

A freight car of mass mc contains a mass of sand ms . At t = 0 a constant horizontal force 
of magnitude F is applied in the direction of rolling and at the same time a port in the 
bottom is opened to let the sand flow out at the constant rate b = dm s / dt . Find the speed 
of the freight car when all the sand is gone. Assume that the freight car is at rest at t = 0 . 

Solution: Choose the positive-direction to point in the direction that the car is moving. 
Let’s take as our system the amount of sand of mass !ms that leaves the freight car 
during the time interval [ , t t + !t] , and the freight car and whatever sand is in it at time t . 

At the beginning of the interval the car and sand is moving with speed v so the x-
component of the momentum at time t is given by 

p (t) = (!m + m (t))v) , (4.1)x s c 

where mc ( ) t is the mass of the car and sand in it at time t . Denote by mc,0 = mc + ms 
where the mc is the mass of the car and ms is the mass of the sand in the car at t = 0 , 
and ms ( ) t = bt is the mass of the sand that has left the car  at time t since 

t dm t 

m (t) = s dt = bdt = bt . (4.2)s ! ! 
0 dt 0 

Thus 

m (t) = m ! bt = m + m ! bt . (4.3)c c,0 c s 

During the interval [ , t t + !t] , the small amount of sand of mass !ms leaves the car with 
the speed of the car at the end of the interval v + !v . So the x-component of the 
momentum at time t + !t is given by 
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p (t + !t) = (!m + m (t))(v + !v) . (4.4)x s c 

Throughout the interval a constant force F is applied to the car so 

px (t + !t) # px ( ) tF = lim . (4.5)
!t"0 !t 

From our analysis above Eq. (4.5) becomes 

(m ( ) t + !m )( v + !v) # (m ( ) t + !m )vc s c sF = lim . (4.6)
!t"0 !t 

Eq. (4.6) simplifies to 

!v !ms !vF = lim mc ( ) t + lim . (4.7)
!t"0 t 0! " !t !t 

The second term vanishes when we take the !t " 0 because it is of second order in the 
infinitesimal quantities (in this case !ms!v ) and so when dividing by !t the quantity is 
of first order and hence vanishes since both !ms " 0 and !v " 0 . So Eq. (4.7) becomes 

!vF = lim mc ( ) t . (4.8)
t 0! " !t 

We now use the definition of the derivative: 

!v dv lim = (4.9)
!t"0 !t dt 

in Eq. (4.8) to fund the differential equation 

dv F = mc ( ) t . (4.10)
dt 

Using Eq. (4.3) we have 

dv F = (mc + ms ! bt ) . (4.11)
dt 

(b) We can integrate this equation through the separation of variable technique. Rewrite 
Eq. (4.11) as 
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Fdt . (4.12)dv = 
(mc + ms ! bt ) 

We can then integrate both sides of Eq. (4.12) with the limits as shown 

v t ( ) t Fdt . (4.13)" dv = " m + m ! bt v=0 0 c s 

Integration yields the velocity of the car as a function of time 

F t F ! mc + ms # bt " 
% . (4.14)v t ( ) = # 

b 
ln( mc + ms # bt )

0 
= # ln $b m + m& c s ' 
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Problem 5: Falling Chain 

A chain of mass m and length l is suspended vertically with its lowest end touching a 
scale. The chain is released and fall onto the scale. What is the reading of the scale when 
a length of chain, y , has fallen? (Neglect the size of the individual links.) Let g denote 
the gravitational constant. 

Solution: 

Suppose the chain is released at time t = 0  . At time t , a length y of the chain has fallen 
onto the scale and the rest of the chain has fallen a distance y . (Note that we have chosen 
downward as the positive y-direction.) 

We can use our energy condition, applied to the portion of the chain that is freely falling 
(mass m t ( ) ), to find that 

(1/ 2) ( ) y 
2 = !m t g ( ) "h = m t gy m t v ( ) . (5.1) 

Hence at time t , the entire chain is falling with a y-component of the velocity given by 

vy = 2gy . (5.2) 

Note at the bottom of the chain, a small increment of chain, (length !y and mass 
"m = !"y = (m / ) l "y ), is moving with speed vy = 2gy . After a small interval of time 
!t has elapsed (we shall shortly consider the limit as !t " 0 ), this small piece of chain 
has come to rest on the scale. Note that we have assumed that the mass per unit length 
! = m / l is uniform. 
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Let’s take as our system this small piece of chain. There is a contact force between the ! ! 
chain and the scale, F ( ) t , that acts on this piece. This force F ( ) t varies in time since c s , c s , 

the speed of the chain increases in time as the chain falls. It also varies due to the uneven 
collisions between the chain links and the scale. We will average this force over the 
uneven collisions in order to smooth out these small variations, and so the average ! 
external force on our system is Fave ( ) t .c s , 

The y-component of the momentum of the system at time t + !t  is at time is 

py (t + !t) = 0 . (5.3) 

The y-component of the momentum of the system at time t  is at time is 

p ( ) t = !mv = (m / ) l !y v , (5.4)y y y 

The change in the y-component of the momentum is therefore 

!py = py (t + !t) " py ( ) t = "(m / ) l !y v y , (5.5) 

Since the external force is equal to the change in momentum we have that 

! !p !y dy 2ave yFc s , ( ) t = lim ĵ = #(m / ) l v y lim ĵ = #(m / ) l v y ĵ = #(m / ) l v y ĵ , (5.6)
!t"0 t 0! " !t !t dt 

. 

where we have used the fact that / = vydy dt . Note that we have chosen downward as the 
positive y-direction so the force on the chain is upwards as we expect in order to stop the 
chain. Recall from the energy condition that vy 

2 = 2gy . So the magnitude of the external 
force is given by 

! 
Fave ( ) t = 2( m / ) l gy . (5.7)c s , 

The scale reading is equal to the magnitude of this force plus the weight of the chain, 
(m / )l yg , that is already on the scale 
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! 
Scale reading = Fave ( ) t + (m / ) l yg = 2( m / ) l yg + (m / ) l yg = 3( m / ) l gy . (5.8)c s , 

Note that at time t, the amount of chain that is rested on the scale is 

1 2y t ( ) = gt . (5.9)
2 

So the scale reading as a function of time is given by 

3 2 2Scale reading = (m / ) l g t . (5.10)
2 

We note that when the entire chain has just come to rest on the scale, y = l , the scale 
reads 

Scale reading = 3mg . (5.11) 

After the collision has ended the scale reading drops to the weight of the chain. 
Scale reading = mg . 
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Problem 6 A spacecraft is launched from an asteroid by being bombarded by a stream of 
rock dust. The stream of dust is ejected from the dust gun at a constant rate dme / dt = b 
at a speed u with respect to the asteroid, which we take to be stationary. Assume that the 
dust comes momentarily to rest at the spacecraft and then slips away sideways; the effect 
is to keep the spacecraft’s mass ms constant. 

a)	 Derive an equation for the acceleration dvs / dt of the spacecraft at time t , in 
terms of the rate that the dust mass hits the surface of the spacecraft dmd / dt , the 
speed of the dust relative to the asteroid u , the mass of the spacecraft ms , and the 
velocity of the spacecraft vs . Show your momentum flow diagrams at time t and 
time t + !t . Clearly identify your system and label all the objects in your system. 
What is the terminal velocity of the spacecraft? Hint: dmd / dt ! b . 

b)	 Using conservation of mass, at time t , find an expression for the rate that the dust 
mass hits the spacecraft, dmd / dt , as a function of the speed of the spacecraft vs , 
the rate that the dust mass is shot from the asteroid dme / dt = b , and the speed u 
of the dust relative to the asteroid. Hint: dmd / dt ! b . 

c)	 Use your results from part b) in part a) to find the speed vs (t) of the spacecraft as 
a function of time, assuming vs (t = 0) = 0 . (If you get an integral that you are not 
sure how to integrate, you can leave your answer in integral form.) 

Solution: We choose as our system, the small amount of dust !md that hits the 
spacecraft during the interval [t,t + !t] and the spacecraft of mass ms . Because we 
assumed that the dust comes momentarily to rest at the spacecraft and then slips away 
sideways; at the end of the interval the dust has the same speed as the spacecraft and the 
mass ms of the spacecraft remains constant. We show the momentum diagrams for the 
system at times t and t + !t below. 
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Because we are ignoring the gravitational force (it is very small), the x-component of the 
momentum of the system is constant during the interval [t,t + !t] and so 

px (t + !t) # px (t)0 = lim . (6.1)
!t"0 !t 

Using the information from the figure above, Eq. (4.5) becomes 

(m + !md )(v + !v ) # (!mdu + m v )s s s s s0 = lim . (6.2)
!t"0 !t 

Eq. (4.6) simplifies to 

!v !v s !md !md s !md0 = lim m + lim v + lim # lim u . (6.3)s s!t"0 !t !t"0 !t !t"0 !t !t"0 !t 

The third term vanishes when we take the !t " 0 because it is of second order in the 
infinitesimal quantities (in this case !md !vs ) and so when dividing by !t the quantity is 
of first order and hence vanishes since both !md " 0 and !vs " 0 . So Eq. (4.7) 
becomes 

!vs !md !md0 = lim m + lim v # lim u . (6.4)s s!t"0 !t !t"0 !t !t"0 !t 

We now use the definition of the derivatives: 

!vs dvs !md dmdlim = ; lim = . (6.5)
!t"0 !t dt !t"0 !t dt 
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in Eq. (4.8) to fund the differential equation describing the relation between the 
acceleration of the spacecraft and the time rate of change of the mass of dust striking the 
spacecraft 

dv dmd0 = m s + (v ! u) . (6.6)s dt dt s 

In the limit as t !" , dv s / dt ! 0 , hence vs (!) = u the spacecraft can go no faster than 
the speed of the dust. 

In order to solve the above differential equation, we begin by observing that 

dmd dme! = b (6.7)
dt dt 

The reason is that b is the rate that the dust is ejected from the asteroid. In the figure 
below a column of ejected dust of length !l = u!t has mass !mejected = "u!t where !  is 
the mass per unit length and is assumed to be constant. 

The rate that the mass is ejected from the asteroid is then 

dm !m
b = e = lim e = #u . (6.8)

dt !t"0 !t 

In the figure below we consider a column of dust of length u!t that is just behind a 
perpendicular surface of the spacecraft at time t . 
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During the time interval [t,t + !t] , the spacecraft is moving a distance v!t so the entire 
column of dust does not hit the spacecraft. Only a fraction of the column hits the 
spacecraft with the mass of the dust that strikes the spacecraft given by 

b 
= "(u # v )!t = (u # vs )!t (6.9)!md s u 

where we used ! = b / u . Dividing the equation through by !t and taking limits we have 
that 

dmd !md b 
= lim = (u # vs ) . (6.10)

dt !t"0 !t u 

Substituting into Eq. (4.10) and after some rearranging yields 

dvs b m = (vs ! u)2 . (6.11)s dt u 

We can integrate this equation by separating variables to find an integral expression for 
the mass of the spacecraft as a function of time 

vs! = vs (t ) t != tdvs ! b 
= dt! . (6.12)# #(v! " u)2 um v ! =0 s s t !=0s 

We can easily integrate both sides of the equation, yielding 

v " =v (t )
1 s s b

! = t . (6.13)
(vs " ! u) umsv " =0s 
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Evaluating the endpoints of the integral yields 

1 1 b t . (6.14)! ! = 
u (vs (t) ! u) ums 

A little algebraic rearrangement yields 

u m + bt s . (6.15)! = 
(vs (t) ! u) ms 

Inverting yields 

m 
v (t) ! u = !u s . (6.16)s m + bt s 

So the speed of the spacecraft as a function of time is then 

ubt . (6.17)vs (t) = 
m + bt s 

Note that in the limit as t !" , vs (!) = u in agreement with what expect, that the 
spacecraft can go no faster than the speed of the dust 
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Problem 7 Space Junk 

A spacecraft of cross-sectional area A, proceeding along the positive x-direction, enters 
an asteroid storm at time t = 0 , in which the mean mass density of the asteroid storm is ! 

!and the average asteroid velocity is u = !u ̂i in the negative x-direction. As the spacecraft 
proceeds through the storm, all of the asteroids that hit the spacecraft stick to it. 

!a)	 Suppose that at time t the velocity of the spacecraft is v = v ̂i in the positive x-
direction, and its mass is m . Further, suppose that in an interval ! t, the mass of 
the spacecraft increases by an amount ! m . Given that there are no external 
forces, using conservation of momentum find an equation for the change of the 
spacecraft velocity !v , in terms of ! m , u , and v ? 

b)	 When the spacecraft enters the asteroid storm, the magnitude of its velocity and 
mass are v0 and m0 , respectively. Integrate your differential equation in part a) to 
find the velocity v of the spacecraft when the mass is m . 

c)	 Find an expression for the mass of the asteroids ! m that sticks to the spacecraft 
within the time interval ! t? (Hint: consider the volume of asteroids swept up by 
the spacecraft in time ! t). 

d)	 When the spacecraft enters the asteroid storm, the magnitude of its velocity and 
mass are v0 and m0 , respectively. What is the mass of the spacecraft at time t? 
(Use your results from parts c) and b).) 

Solution: Let’s choose as our system a small element of the asteroid cloud ! m that is 
absorbed by the rocket during the interval [ , t t + ! t] and the rocket itself. Choose positive 
x-direction as the direction the rocket is moving. The momentum diagram at the 
beginning of the interval at time t is shown in the figure below. 

The momentum diagram at time t + ! t is also shown below. 
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Because we are assuming that there are no external forces acting on our system, 

px (t + !t) # px ( ) t0 = lim . (7.1)
t 0 t! " ! 

Using the information from the figure above, Eq. (7.1) becomes 

(m + !m)( v + !v) (# #! mu + mv )0 = lim . (7.2)
t 0! " !t 

Eq. (7.2) simplifies to 
!v !m !m!v !m0 = lim m + lim v + lim + lim u . (7.3)

t 0! " t 0! " t 0! " t 0! " !t !t !t !t 

The third term vanishes when we take the !t " 0 because it is of second order in the 
infinitesimal quantities (in this case !m!v ) and so when dividing by !t the quantity is 
of first order and hence vanishes since both !m " 0 and !v " 0 . So Eq. (7.3) becomes 

!v !m !m0 = lim m + lim v + lim u . (7.4)
t 0! " !t"0 t 0! " !t !t !t 

We now use the definition of the derivatives: 

!v dv !m dm lim = ; lim = . (7.5)
!t"0 t 0! " !t dt !t dt 

in Eq. (7.5) to find the differential equation describing the relation between the 
acceleration of the rocket and the time rate of change of the mass of the rocket 

dv dm 0 = m + (v + u) . (7.6)
dt dt 

b) We can integrate this equation through the separation of variable technique. Rewrite 
Eq. (7.6) as (cancel the common factor dt ) 

dv dm ! = . (7.7)
u + v m 

We can then integrate both sides of Eq. (7.7) with the limits as shown 
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v!=v m ( ) m!=mdv ! dm !" # = (7.8)#u + v! m! v!=v m!=m0 0 

Integration yields 
! u + ( ) !v m " m " 

% (7.9)# ln = ln $ % $ u + v m& 0 ' & 0 ' 

Recall that ln( / ) b = ! ln( / ) a so Eq. (7.9) becomes a b 

! u + v0 " ! m " 
$ (7.10)ln $ = ln ##% u + v & % m0 & 

Also recall that exp(ln( / )) b = a /a b and so exponentiating both sides of Eq. (7.10) yields 

u + v m0 = (7.11)
u + ( ) 0v m m 

After some rearranging, the speed v(m) of the rocket as a function of m can be 
expressed as 

( + ( )) = m0 (u + v0 )m u v m 

m u + ( ) 0 (u + v0 ) (7.12)v m = 
m 

m( ) = 0 (u + v0 ) ! uv m 
m 

In the above expression for the speed ( ) of the rocket is a function of the mass of the v m 
rocket. We can determine how the mass of the rocket behaves as a function of time by 
considering mass conservation. In the interval [ , t t + ! t] the rocket sweeps out a tube of 
length !l = v! t . All the asteroids inside this tube are collected by the rocket adding an 
amount of mass to the rocket "m1 = ! Av " t . In addition, because the asteroid are moving 
towards the rocket an additional amount of mass "m2 = ! Au " t also is collected by the 
rocket (see figure below). 
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Therefore the total amount of mass collected by the rocket during the interval is 

!m = !m1 + !m2 = " Av! t + " Au! t = " A(v + u)! t . (7.13) 

Dividing Eq. through by !t and taking limits we have that 

dm "m = lim ( + u) (7.14)= ! A v . 
t 0" # dt "t 

We now substitute the second line in Eq. (7.12) into Eq. (7.14) and find that 

dm m0= ! A (u + v0 ) . (7.15)
dt m 

We can integrate this equation by separating variables to find an integral expression for 
the mass of the rocket as a function of time 

m" =m t ( ) t"=t 

"# m dm b " = # ! Am 0 (u + v0 )dt " . (7.16) 
m" =m t" =00 

We can easily integrate both sides of the equation yielding 

1
(m(t)2 ! m0

2 ) = "Am0 (u + v0 )t . (7.17)
2 

So the mass of the rocket as a function of time is then 

2! A u ( + v )tm t ( ) = m0 1+ 0 . (7.18)
m0 

We now substitute Eq. (7.18) into the third line of Eq. (7.12) yielding the speed of the 
rocket as a function of time 

" u . (7.19)0 

0 

0 

( ) 
2 ( )1 

u vv t 
A u v t 
m 

! 

+ = 
++ 
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Problem 8 Continuous Mass Transport: falling raindrop A raindrop of initial mass 
m0 starts falling from rest under the influence of gravity. Assume that the raindrop gains 
mass from the cloud at a rate proportional to the momentum of the raindrop, 
dm / dt = km v , where m is the instantaneous mass of the raindrop, v is the r r r r	 r 

instantaneous velocity of the raindrop, and k is a constant with units [m-1] . You may 
neglect air resistance. 

a)	 Derive a differential equation for the velocity of the raindrop. 

b)	 Show that the speed of the drop eventually becomes effectively constant and give 
an expression for the terminal speed. 

Solution: At time t choose the raindrop with mass mr (t) and a small mass element !mc 

in the cloud that will be added to the raindrop during the time interval !t . Choose the 
positive y direction downward. Then the momentum flow diagram is shown in the figure 
below. 

At time t , the small mass element !mc is at rest in the cloud at time t . The raindrop is 
moving downward with velocity 

! ˆvr ( ) t = vr j .	 (8.1) 

So the momentum of the drop is equal to the momentum of the system 

! ˆp	 ( ) t = m v j (8.2)sys r r 

At time t + !t , the raindrop has added some mass !mc from the cloud and is moving 
downward with velocity 

! ˆv (t + !t) = (v + !v ) j .	 (8.3)r r r 
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where !vr is the infinitesimal change in the y-component of the velocity of the raindrop. 
So the momentum of the drop is 

! ˆp (t + !t) = (m + !m ) ( v + !v ) j . (8.4)sys r c r r 

During this interval there is an external gravitational force acting on the system and a 
buoyant force in the cloud that is keeping the mass element !mc from falling. Since the 
total force on the mass element !mc is zero, the total external force acting on the system 
is just the gravitational force acting on the raindrop, 

! 
total ˆFext r j . (8.5)= m g 

Newton’s Second Law and Third Law for the system state that he total external force is 
equal to the derivative of the momentum 

!! 
total dpsys = . (8.6)Fext dt 

Recall the definition of the derivative of the system momentum, 

! ! !dp p (t + !t) # p ( ) tsys sys sys = lim . (8.7)
t 0! " dt !t 

Substitute Eq.(8.4), Eq.(8.2) , and Eq.(8.5) into Eq.(8.6) yields 

ˆ ˆ(mr + !mc ) ( vr + !vr ) j # r r jm v ˆm g j = lim r ! 
. (8.8)

t 0 t! " 

Expanding the numerator in Eq.(8.8), 

ˆ(m !v + !m v + !m !v ) jˆ r r c r c r 
r j = lim m g . (8.9)

t 0! " !t 

The third term in the numerator on the right hand side of Eq.(8.9) is a second oreder term 
in infinitesimals and hence in the limit as !t " 0 vanishes, 

ˆ!mc!vr jlim " 0 . (8.10)
t 0 t! " ! 

Thus Eq.(8.9) becomes 
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!vr !mc dv r dm rˆ ˆ ˆ ˆ ˆm g j = m lim j + v lim j = m j + v j (8.11)
t 0! " t 0! " 

r r !t r !t r dt r dt 

The y-components of Eq.(8.11) are equal, 

dv dm 
m g = m r + v r (8.12)r r dt r dt 

From the statement of the problem, we have modeled the rate that the rate that raindrop 
adds mass is proportional to the momentum of the raindrop 

dm r = km v . (8.13)
dt r r 

Thus Eq.(8.12) becomes 

dvr 2mr g = mr + km rvr . (8.14)
dt 

Divide out the mass of the raindrop from Eq.(8.14) giving 

dvr 2g = + kv r (8.15)
dt 

Thus the acceleration of the raindrop is thus non-uniform and given by 

dvr = g ! kv 2 . (8.16)
dt r 

The raindrop will reach a terminal velocity when the acceleration is zero, 

0 = g ! kv 2 . (8.17)r , ter 

So the terminal velocity is 

gv = . (8.18)r , ter k 
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Problem 9: Rocket Problem A rocket ascends from rest in a uniform gravitational field 
by ejecting exhaust with constant speed u relative to the rocket. Assume that the rate at 
which mass is expelled is given by dmf / dt = ! mr , where mr is the instantaneous mass 
of the rocket and ! is a constant. The rocket is retarded by air resistance with a force 
F = bmrvr proportional to the instantaneous momentum of the rocket where b  is a  
constant and vr is the speed of the rocket. Find the speed of the rocket as a function of 
time. 

Solution: 

To find the rocket’s velocity as a function of time, we first need to find how the velocity 
changes with respect to time, the differential equation mentioned in the problem 
statement. Take the positive y-direction to be upward and assume that the rocket velocity 
is upward as well. For purposes of space and clarity, the positive upward direction is 
shown as being to the right in the figures. The gravitational force and air resistance force 
are then in the negative direction, to the left in the figures. 

As suggested by the figure above, take the system to be the rocket and fuel combination. 
The smaller square represents the small amount of fuel of mass !mf ,out that is ejected 
during the interval [t ,t + !t] . In the above figure 

m (t) = m (t) (9.1)r r ,0 + mf ,in 

is the combined mass of the rocket where mr ,0 is the dry mass of the rocket and mf ,in ( )t 
is the mass of fuel inside the rocket at time t that does not leave the rocket during the 
interval. Note that differentiating the above equation yields 

dmr (t) dmf ,in (t) = . (9.2)
dt dt 

Denote by mf ,0 the fuel in the rocket at t = 0 . Then 
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(t) (9.3)mf ,0 = mf ,in (t) + mf ,out 

where mf ,out ( )t is the mass of the fuel that has been ejected during the interval [0,t ] . 
Since mf ,0 is constant, we can differentiate the above equation yielding 

0 = 
dmf ,0 dmf ,in (t) dmf ,out (t) = + . (9.4)

dt dt dt 

Thus combining equations Eq. (9.2) and Eq. (9.4) yields 

(t)dmf ,out = ! 
dm (t)r . (9.5)

dt dt 

From the statement of the problem, the burn rate of fuel is then equal to the negative of 
the rate that the mass of the rocket is decreasing and from the statement of the problem is 
given by 

(t)dmf ,out dm (t)
! m (t)= = " r . (9.6)r dt dt 

Returning to our momentum diagram we see that at time t , the y-component of the 
momentum of the system py

sys ( ) t is given by 

py
sys ( ) t = (mr ( ) t + !mf ,out ) vr (9.7) 

During the interval the fuel is ejected backwards relative to the rocket with speed u . 
After the interval has ended the momentum diagram of the system is shown below. 

At time t + !t , the y-component of the momentum of the system py
sys (t + !t) is given by 

psys (t t)= m t v + !v ) m v + !v - u) (9.8)y + ! r ( ) ( r r + ! f ,out ( r r 
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and so the change in y-component of the momentum of the system during the interval 
[t ,t + !t]  is 

sys sys sys !py = py (t + !t) " py ( ) t 

= mr ( ) ( t vr + !vr ) + !mf ,out (vr + !vr " u) " (mr ( ) t + !mf ,out ) vr . (9.9) 

= mr ( ) t !vr + !mf ,out !vr "! mf ,out u 

The external force acting on the system is given by 

F ext = !m (t)g ! bm (t)v . (9.10)y r r r 

The momentum principle 

!psys 
ext yF = lim (9.11)y !t"0 !t 

then becomes 

mr ( ) t !vr + !mf ,out !vr #! mf ,out u#m ( ) t g # bm ( ) t v = lim . (9.12)r r r t 0 !t! " 

We note that 

!mf ,out !vrlim = 0 . (9.13)
!t"0 !t 

Then using the definition of the derivative, we find that the differential equation 
describing the motion of the system is given by 

dv 
! 

d mf ,out !m (t)g ! bm (t)v = m (t) r u (9.14)r r r r dt dt 

We can now substitute Eq. (9.6) into the above equation and find that 

dv
!m (t)g ! bm (t)v = m (t) r ! " m (t)u . (9.15)r r r r dt r 

We can divide through by the mass of the rocket in the above equation yielding 
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dv r = ! u " g " bv (9.16)
dt r 

On to the Differential Equation: 

We’ve done the physics, but there are several interesting aspects to the calculation of the 
velocity as a function of time. Our differential equation is separable and so 

Rewrite Eq. (9.16) as 

dv r = dt . (9.17)
! u " g " rbv dt 

We can integrate both sides 

vr " =vr ( ) t t"=tdv r " = dt " . (9.18)$ $! u # g # bv " v" =0 r t" =0r 

Integration yields 

1 " ! u $ g $ bv ( ) t #r & = t . (9.19)$ ln 
b % ! u $ g (' 

After a slight rearrangement, this expression can be exponentiated yielding 

! u " g " bv (t)r "bt= e . (9.20)
! u " g 

After some rearrangement we find that the speed of the rocket is given by 

1 " bt ) .v (t) = (! u " g)(1" e (9.21)r b 

There are several aspects of the result in Eq. (9.21) that are worth considering. First, 
unless ! u > g , the rocket doesn’t get off the ground. Next, the rocket continues to 
accelerate, only reaching terminal speed v = (! u " g )/ b in the limit t !" ; the air terminal 

resistance force seems to have wimped out. 

The key point in considering the result of Eq. (9.21) is in the model for the rate at which 
the fuel is exhausted 
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dm dm f ,out r= " = ! mr ( ) t , (9.22)
dt dt 

Solving Equation (9.22) would yield that the mass of the rocket and remaining fuel is 

mr (t) = m0 e
!" t (9.23) 

where m0 = mr ,0 + mf ,0 The mass being accelerated decreases exponentially, the 
gravitation force and the air resistance force, being proportional to the mass, decrease as 
well, and so the rocket can continue to accelerate indefinitely. 

The product / dt) is sometimes called the “thrust” (ask your Course XVI u( dmf ,out 

friends); check to see that the thrust has dimensions of force. In the model for this 
problem, we would have that the “thrust force” is 

dm f ,out F = u = ! u m r , (9.24)thrust dt 

an unlikely feature of realistic rocket design. At best, even if Equation (9.24) were an  
approximate model, the thrust would have to vanish when the fuel runs out. 

The bottom line is that the model for the fuel burn rate was given in the form it was in 
order to make solving for the velocity as a function of time possible. Maybe a neat math 
problem, but the physics was done once we found the rate of change of momentum. 
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