
Module 3: Cartesian Coordinates and Vectors 

“Philosophy is written in this grand book, the universe which stands 
continually open to our gaze. But the book cannot be understood unless 
one first learns to comprehend the language and read the letters in which 
it is composed. It is written in the language of mathematics, and its 
characters are triangles, circles and other geometric figures without 
which it is humanly impossible to understand a single word of it; without 
these, one wanders about in a dark labyrinth.” 

Galileo Galilee in Assayer 

3.1 Introduction 

Mathematics and physics have been historically interwoven since the time of the ancient 
Greeks. 

“The calculus had its origins in the logical difficulties encountered by the ancient 
Greek mathematicians in their attempt to express their intuitive ideas on the ratios 
and proportionalities of lines, which they vaguely recognized as continuous, in 
terms of numbers, which they regarded as discrete.”1 

The modern science of kinematics began in the 16th century, culminating with 
Galileo’s description of the motion of bodies, published in at the start of the 17th century. 
Galileo used geometric techniques derived from Euclid’s Elements to introduce the 
concepts of velocity and acceleration. The reliance on mathematics to describe nature is 
the foundation on which science is built. 

With the introduction of analytic geometry, the systematic use of variables, and a 
use of the infinitesimal, Leibnitz and Newton developed algorithms for introducing and 
calculating the derivative and the integral, the core concepts of calculus. Although the 
calculus was not used by Newton in his development of the Principles of the Mechanics, 
its use was found to be indispensable in solving countless problems. 

In physics, there are well-defined problem solving methodologies that provide 
step-by-step instructions on applying physics concepts but the key question is: How do 
these methodologies fit into the larger context of expert problem solving? 

Although algorithmic steps can be articulated (and memorized), it is essential for 
students to understand the meaning of these methodologies. In particular how the 
methodologies are related to the core physics concepts. The process of understanding and 
mastering these methodologies is slow because it is built on practice. It is also difficult 
because it requires a simultaneous understanding of physical and mathematical concepts. 
The methodologies can bring out the subtleties of the physical concepts while the 
concepts illustrate the need for the mathematics. This is a non-algorithmic learning 

1 Carl B. Boyer,The History of the Calculus and its Conceptual Development, Dover, New York, 1949, p. 4 
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process of synthesizing two difficult abstract knowledge systems simultaneously, 
mathematical physics. 

The conceptual foundation of the methodologies provides the framework for 
thinking about the physics problem. Thinking about physics problems and designing 
problem solving strategies is the fusion that turns students into expert problem solvers. 
Learning to think about a physics problem using force diagrams is an example of this 
type of fusion. 

An emphasis on modeling of physical systems is an effective way to mitigate 
against two of the main hazards of mathematics classes: 

1.	 The students recognize certain formulas as relevant to other subjects, but view 
mathematical reasoning as an isolated game with fixed rules that they are forced 
to master, but with no connection to other subjects. 

2.	 Because they can pass the course by memorizing some templated techniques (and 
because of point 1) the mathematics they “learn” is not truly available to them 
when solving problems in other domains. 

Today, the first-year student at MIT is expected to understand single variable 
calculus (18.01), multiple variable calculus (18.02), along with Newtonian Mechanics 
(8.01), and Electricity and Magnetism (8.02). These General Institute Requirements are 
in fact a rite of passage for the modern MIT student into the world of science and 
engineering. 

The understanding of physics will deepen because students can solve more 
mathematically challenging homework problems. This will reinforce the idea that 
calculus is an important part of physics. The understanding of mathematics will deepen 
because physics provides a rich source of problems 

3.2 Cartesian Coordinate System 

Physics involve the study of phenomena that we observe in the world. In order to connect 
the phenomena to mathematics we begin by introducing the concept of a coordinate 
system. A coordinate system consists of four basic elements: 

(1) Choice of origin 

(2) Choice of axes 

(3) Choice of positive direction for each axis 

(4) Choice of unit vectors for each axis 

There are three commonly used coordinate systems: Cartesian, cylindrical and 
spherical. What makes these systems extremely useful is the associated set of 
infinitesimal line, area, and volume elements that are key to making many integration 
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calculations in classical mechanics, such as finding the center of mass and moment of 
inertia. 

Cartesian Coordinates 

Cartesian coordinates consist of a set of mutually perpendicular axes, which intersect at a 
common point, the origin O . We live in a three-dimensional environment; for that 
reason, the most common system we will use has three axes, for which we choose the 
directions of the axes and position of the origin are. 

(1) Choice of Origin 

Choose an origin O . If you are given an object, then your choice of origin may coincide 
with a special point in the body. For example, you may choose the mid-point of a straight 
piece of wire. 

(2) Choice of Axis 

Now we shall choose a set of axes. The simplest set of axes are known as the Cartesian 
axes, x -axis, y -axis, and the z -axis. Once again, we adapt our choices to the physical 
object. For example, we select the x -axis so that the wire lies on the x -axis, as shown in 
Figure 3.1 

Figure 3.1 A segment of wire of length a lying along the x -axis of a Cartesian 
coordinate system. 

Then each point P in space our S can be assigned a triplet of values (xP , yP , zP ) , the 
Cartesian coordinates of the point P . The ranges of these values are: !" < xP < +" , 
!" < yP < +" , !" < zP < +" . 

The collection of points that have the same the coordinate yP is called a level 
surface. Suppose we ask what collection of points in our space S have the same value of 
y = yP . This is the set of points SyP 

={( , , ) ! S such that y = yP} yP
x y z . This set S is a 
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plane, the x ! z plane (Figure 3.2), called a level set for constant yP . Thus, the y -
coordinate of any point actually describes a plane of points perpendicular to the y -axis. 

Figure 3.2 Level surface set for constant value yP . 

(3) Choice of Positive Direction 

Our third choice is an assignment of positive direction for each coordinate axis. We shall 
denote this choice by the symbol + along the positive axis. Conventionally, Cartesian 
coordinates are drawn with the y ! z plane corresponding to the plane of the paper. The 
horizontal direction from left to right is taken as the positive y -axis, and the vertical 
direction from bottom to top is taken as the positive z -axis. In physics problems we are 
free to choose our axes and positive directions any way that we decide best fits a given 
problem. Problems that are very difficult using the conventional choices may turn out to 
be much easier to solve by making a thoughtful choice of axes. The endpoints of the wire 
now have coordinates ( / 2,0,0) and ( .a !a / 2,0,0) 

(4) Choice of Unit Vectors 

We now associate to each point P in space, a set of three unit directions vectors 
(îP , ĵP ,k̂ P ) . A unit vector has magnitude one: îP = 1, ĵP = 1 , and k̂ P = 1 . We assign the 

direction of îP to point in the direction of the increasing x -coordinate at the point P . We 

define the directions for ĵP and k̂ P in the direction of the increasing y -coordinate and 
z -coordinate respectively. (Figure 3.3). 
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Figure 3.3 Choice of unit vectors. 

3.3 Vector Analysis 

Introduction to Vectors 

Certain physical quantities such as mass or the absolute temperature at some point only 
have magnitude. These quantities can be represented by numbers alone, with the 
appropriate units, and they are called scalars. There are, however, other physical 
quantities which have both magnitude and direction; the magnitude can stretch or shrink, 
and the direction can reverse. These quantities can be added in such a way that takes into 
account both direction and magnitude. Force is an example of a quantity that acts in a 
certain direction with some magnitude that we measure in newtons. When two forces act 
on an object, the sum of the forces depends on both the direction and magnitude of the 
two forces. Position, displacement, velocity, acceleration, force, momentum and torque 
are all physical quantities that can be represented mathematically by vectors. We shall 
begin by defining precisely what we mean by a vector. 

Properties of a Vector 

A vector is a quantity that has both direction and magnitude. Let a vector be denoted by ! ! ! 
the symbol A . The magnitude of A is | A |! A . We can represent vectors as geometric 
objects using arrows. The length of the arrow corresponds to the magnitude of the vector. 
The arrow points in the direction of the vector (Figure 3.4). 
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Figure 3.4 Vectors as arrows. 

There are two defining operations for vectors: 

(1) Vector Addition: 

! ! ! ! ! 
Vectors can be added. Let A and B be two vectors. We define a new vector, C = A + B , ! ! 
the “vector addition” of A and B , by a geometric construction. Draw the arrow that ! ! ! 
represents A . Place the tail of the arrow that represents B at the tip of the arrow for A as ! ! 
shown in Figure 3.5(a). The arrow that starts at the tail of A and goes to the tip of B is ! ! ! 
defined to be the “vector addition” C = A + B . There is an equivalent construction for the ! ! 
law of vector addition. The vectors A and B can be drawn with their tails at the same 
point. The two vectors form the sides of a parallelogram. The diagonal of the ! ! ! 
parallelogram corresponds to the vector C = A + B , as shown in Figure 3.5(b). 

Figure 3.5(a) Geometric sum of vectors. Figure 3.5 (b) Geometric sum of vectors. 

Vector addition satisfies the following four properties: 

(i) Commutivity: 

The order of adding vectors does not matter; 

! ! ! ! 
A + B = B + A . (3.3.1) 
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Our geometric definition for vector addition satisfies the commutivity property (i) since 
in the parallelogram representation for the addition of vectors, it doesn’t matter which 
side you start with, as seen in Figure 3.6. 

Figure 3.6 Commutative property of vector addition 

(ii) Associativity:  

When adding three vectors, it doesn’t matter which two you start with 

! ! ! ! ! ! 
(A + B) + C = A + (B + C) (3.3.2) 

! ! ! ! ! ! 
In Figure 3.7, we add (A + B) + C , and A + (B + C) to arrive at the same vector sum in 
either case. 

Figure 3.7 Associative law. 

(iii) Identity Element for Vector Addition: 

! 
There is a unique vector, 0 , that acts as an identity element for vector addition. For all ! 
vectors A , 

! ! ! ! ! 
A + 0 = 0 + A = A (3.3.3) 
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(iv) Inverse Element for Vector Addition: 

! 
For every vector A , there is a unique inverse vector 

! ! 
( !1) A " !A (3.3.4) 

such that 
! ! ! 
A +(!A)= 0 

! ! ! ! 
The vector !A has the same magnitude as A , | A | | = !A |= A , but they point in opposite 
directions (Figure 3.8). 

Figure 3.8 additive inverse. 

(2) Scalar Multiplication of Vectors: 
! 

Vectors can be multiplied by real numbers. Let A be a vector. Let c be a real positive ! 
number. Then the multiplication of A by c is a new vector, which we denote by the ! ! ! 
symbol c A . The magnitude of c A is c times the magnitude of A (Figure 3.9a), 

c A = Ac (3.3.5) 

! ! 
Since c > 0 , the direction of c A is the same as the direction of A . However, the 

! ! 
direction of !c A is opposite of A (Figure 3.9b). 

! 
Figure 3.9 Multiplication of vector A by (a) c > 0 , and (b) !c < 0 . 
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Scalar multiplication of vectors satisfies the following properties: 

(i) Associative Law for Scalar Multiplication: 

The order of multiplying numbers is doesn’t matter. Let b and c be real numbers. Then 

! ! ! ! 
( A) = bc )A = (cb A) = c b A)b c ( ( (3.3.6) 

(ii) Distributive Law for Vector Addition: 

Vector addition satisfies a distributive law for multiplication by a number. Let c be a 
real number. Then 

! ! ! ! 
c (A + B) = c A + c B (3.3.7) 

Figure 3.10 illustrates this property. 

Figure 3.10 Distributive Law for vector addition. 

(iii) Distributive Law for Scalar Addition: 

The multiplication operation also satisfies a distributive law for the addition of numbers. 
Let b and c be real numbers. Then 

! ! ! 
(b + c) A = b A + c A (3.3.8) 

Our geometric definition of vector addition satisfies this condition as seen in Figure 3.11. 

2 



Figure 3.11 Distributive law for scalar multiplication 

(iv) Identity Element for Scalar Multiplication: 

The number 1 acts as an identity element for multiplication, 

! ! 
1 A = A (3.3.9) 

3.4 Application of Vectors 

When we apply vectors to physical quantities it’s nice to keep in the back of our minds 
all these formal properties. However from the physicist’s point of view, we are interested 
in representing physical quantities such as displacement, velocity, acceleration, force, 
impulse, momentum, torque, and angular momentum as vectors. We can’t add force to 
velocity or subtract momentum from torque. We must always understand the physical 
context for the vector quantity. Thus, instead of approaching vectors as formal 
mathematical objects we shall instead consider the following essential properties that 
enable us to represent physical quantities as vectors. 

(1) Vectors can exist at any point P in space. 

(2) Vectors have direction and magnitude. 

(3) Vector Equality: Any two vectors that have the same direction and magnitude are 
equal no matter where in space they are located. 

(4) Vector Decomposition: Choose a coordinate system with an origin and axes. We can 
decompose a vector into component vectors along each coordinate axis. In Figure 3.12 
we choose Cartesian coordinates for the x y plane (we ignore the z -direction for -

! 
simplicity but we can extend our results when we need to). A vector A at P can be 
decomposed into the vector sum, 

! ! ! 
A = Ax + A y , (3.4.1) 
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! 
where Ax is the x -component vector pointing in the positive or negative x -direction, 

! 
and A y is the y -component vector pointing in the positive or negative y -direction 
(Figure 3.12). 

Figure 3.12 Vector decomposition 

(5) Unit vectors: The idea of multiplication by real numbers allows us to define a set of 
unit vectors at each point in space. We associate to each point P in space, a set of three 
unit vectors ( , i j k) . A unit vector means that the magnitude is one: | | i = 1 , j =ˆ ˆ , ˆ ˆ | | ˆ 1 , and 
| k̂ |= 1 . We assign the direction of î to point in the direction of the increasing x -
coordinate at the point P . We call î the unit vector at P pointing in the + x -direction. 
Unit vectors ĵ and k̂ can be defined in a similar manner (Figure 3.13). 

Figure 3.13 Choice of unit vectors in Cartesian coordinates. 

(6) Vector Components: Once we have defined unit vectors, we can then define the x -
! ! ! 

component and y -component of a vector. Recall our vector decomposition, A = Ax + A y ! 
. We can write the x-component vector, Ax , as 

A 
! 
x = Ax î (3.4.2) 
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In this expression the term Ax , (without the arrow above) is called the x-component of the 
! 

vector A . The x -component Ax can be positive, zero, or negative. It is not the 
! 

magnitude of Ax which is given by (Ax
2 )1/ 2 . Note the difference between the x -
! 

component, Ax , and the x -component vector, Ax . 

In a similar fashion we define the y -component, Ay , and the z -component, Az , of the 
! 

vector A 

A 
! 
y = Ay ĵ, A 

! 
z = Az k̂ (3.4.3) 

! ! 
A vector A can be represented by its three components A = (Ax , Ay , Az ) . We can also 
write the vector as 

A 
! 
= Ax î + Ay ĵ + Az k̂ (3.4.4) 

! 
(7) Magnitude: In Figure 3.13, we also show the vector components A = (Ax , Ay , Az ) . 

! 
Using the Pythagorean theorem, the magnitude of A is, 

A = Ax 
2 + Ay 

2 + Az 
2 (3.4.5) 

! 
(8) Direction: Let’s consider a vector A = (Ax , Ay ,0) . Since the z -component is zero, the 

! ! 
vector A lies in the x y plane. Let ! denote the angle that the vector A makes in the -
counterclockwise direction with the positive x -axis (Figure 3.14). Then the x -
component and y -component are 

Ax = Acos( ! ), Ay = Asin( ! ) (3.4.6) 

Figure 3.14 Components of a vector in the x-y plane. 

We can now write a vector in the -x y plane as 
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! 
= Acos( ) ! î + Asin( ) ˆA ! j (3.4.7) 

Once the components of a vector are known, the tangent of the angle ! can be 
determined by 

Ay = 
Asin( ! ) 

= tan( ! ) , (3.4.8) 
Ax Acos( ! ) 

that yields 

# A $ 

' Ax (
& . (3.4.9) ! = tan "1 % 

y 

Clearly, the direction of the vector depends on the sign of Ax and Ay . For example, if 
both Ax > 0 and Ay > 0 , then 0 < ! < " / 2 , and the vector lies in the first quadrant. If, 
however, Ax > 0 and Ay < 0 , then #! / 2 < " < 0 , and the vector lies in the fourth 
quadrant. 

(9) Unit vector in the direction of A 
! 

: Let A 
! 
= Ax î + Ay ĵ + Az k̂ . Let Â denote a unit 

! 
vector in the direction of A . Then 

!
!
A

=

î + A ĵ + Az k̂AxÂ =
 y (3.4.10)
2 2+ A
y +
Az 

2 )1/ 2 A (
Ax 

! ! 
(10) Vector Addition: Let A and B be two vectors in the x-y plane. Let !A and !B ! ! 
denote the angles that the vectors A and B make (in the counterclockwise direction) 
with the positive x-axis. Then 

A 
! 
= Acos( !A ) î + Asin( !A ) ĵ (3.4.11) 

B 
! 
= Bcos( !B ) î + Bsin( !B ) ĵ (3.4.12) 

! ! ! 
In Figure 3.15, the vector addition C = A + B is shown. Let !C denote the angle that the 

! 
vector C makes with the positive x-axis. 
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Figure 3.15 Vector addition with components 

! 
Then the components of C are 

Cx = Ax + Bx , Cy = Ay + By (3.4.13) 

In terms of magnitudes and angles, we have 

Cx = C cos( !C ) = Acos( !A ) + Bcos( !B )

Cy = C sin( !C ) = Asin( !A ) + Bsin( !B ) 

(3.4.14)


! 
We can write the vector C as 

C 
! 
= (Ax + Bx ) î + (Ay + By ) ĵ = C cos( !C ) î + C sin( !C ) ĵ (3.4.15) 

Example 1: Given two vectors, A 
! 
= 2 î + !3 ĵ + 7 k̂ and B 

! 
= 5î + ĵ + 2k̂ , find: (a) A 

! 
; (b) 

B 
! 

; (c) A 
! 
+ B 
! 

; (d) A 
! 
! B 
! 

; (e) a unit vector Â pointing in the direction of A 
! 

; (f) a unit 

vector B̂ pointing in the direction of B 
! 

. 

(a) A 
! 
= 2 + ! + 7 )1/ 2 ( 2 ( 3) 2 2 = 62 = 7.87 

2 2 2(b) B 
! 
= (5 +1 + 2 )1/ 2 = 30 = 5.48 

A 
! 
+ B 
! 
= (Ax + Bx ) î + (Ay + By ) ĵ + (Az + Bz ) k̂ 

(c) = (2 + 5) î + ( 3 +1) ĵ + (7 + 2) ˆ! k


= 7 î ! 2 ĵ + 9 k̂
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A 
! 
! B 
! 
= (Ax ! Bx ) î + (Ay ! By ) ĵ + (Az ! Bz ) k̂ 

(d) (2 ! 5) ˆ + ( 3 !1) ˆ + (7 ! 2) k= i ! j ˆ 

= !3 î ! 4 ĵ + 5 k̂ 

(e) A unit vector Â in the direction of A 
! 

can be found by dividing the vector A 
! 

by! 
the magnitude of A . Therefore 

Â = A 
! 

/ A 
! 
= (2 î + !3 ĵ + 7 k̂ ) / 62 

(f) In a similar fashion, B̂ = B 
! 

/ B 
! 
= (5î + ĵ + 2k̂ ) / 30 . 

Example 2: Consider two points located at r! 1 and r! 2 , separated by distance r12 = r ! 1 ! r ! 2 . 
! 

Find a vector A from the origin to the point on the line between r! 1 and r! 2 at a distance 
xr12 from the point at r! 1 , where x is some number. 

Solution: Consider the unit vector pointing from r! 1 and r! 2 given by 

r̂12 = r ! 1 ! r ! 2 / r 
! 
1 ! r ! 2 = r ! 1 ! r ! 2 / r12 . The vector á! in the figure connects A 

! 
to the point at r! 1 , 

therefore we can write á! = xr r̂ = xr r ! ! r ! / r = x r ! ! r ! . The vector r ! = A 
! 
+ á! .12 12 12 ( 1 2 12 ) ( 1 2 ) 1 

Therefore A 
! 
= r ! 1 ! á! = r ! 1 ! x (r ! 1 ! r ! 2 )= r ! 1(1 ! x) + xr ! 2 . 

3.5 Dot Product 

We shall now introduce a new vector operation, called the “dot product” or “scalar 
product” that takes any two vectors and generates a scalar quantity (a number). We shall 
see that the physical concept of work can be mathematically described by the dot product 
between the force and the displacement vectors. 

! ! 
Let A and B be two vectors. Since any two non-collinear vectors form a plane, ! ! 

we define the angle ! to be the angle between the vectors A and B as shown in Figure 
3.16. Note that ! can vary from 0 to ! . 
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Figure 3.16 Dot product geometry. 

Definition: Dot Product 

! ! ! ! 
The dot product A ! B of the vectors A and B is defined to be product of the ! ! 
magnitude of the vectors A and B with the cosine of the angle ! between the 
two vectors: 

! ! 
A ! B = ABcos(") (3.5.1) 

! ! ! ! 
Where A = | A | and B =| B | represent the magnitude of A and B respectively.  
The dot product can be positive, zero, or negative, depending on the value of 
cos! . The dot product is always a scalar quantity. 

The angle formed by two vectors is therefore 

$
 !A
#

!
B
'


! = cos 

! 

"1
))(
!
B 

!
A

&&% 
(3.5.2)


The magnitude of a vector A is given by the square root of the dot product of the vector ! 
A with itself. 

! 
A
 = (


! 
A
!

! 
A
)1/ 2 (3.5.3)


We can give a geometric interpretation to the dot product by writing the definition as 
! ! 
A ! B = ( Acos(")) B (3.5.4) 

! 
In this formulation, the term Acos! is the projection of the vector B in the direction of 

! 
the vector B . This projection is shown in Figure 3.17(a). So the dot product is the ! ! ! 
product of the projection of the length of A in the direction of B with the length of B . 
Note that we could also write the dot product as 
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! ! 
A ! B = A(Bcos(")) (3.5.5) 

! ! 
Now the term Bcos(!) is the projection of the vector B in the direction of the vector A 
as shown in Figure 3.17(b). From this perspective, the dot product is the product of the ! ! ! 
projection of the length of B in the direction of A with the length of A . 

Figure 3.17(a) and 2.17(b)  Projection of vectors and the dot product. 

From our definition of the dot product we see that the dot product of two vectors that are 
perpendicular to each other is zero since the angle between the vectors is ! / 2 and 
cos(! / 2) = 0 . 

Algebraic Properties of Dot Product 

! 
The first property involves the dot product between a vector c A where c is a scalar and a 

! 
vector B , 

(1a) c 
! 
A
!

! 
B
= c( 

! 
B

! 
A ! ) (3.5.6)


! ! 
The second involves the dot product between the sum of two vectors A and B with a 

! 
vector C , 

(2a) ( 
! 
A
+

! 
B
) !

! 
C
=


! 
C

! 
A ! 

! 
B
!

! 
C
 (3.5.7)
+


Since the dot product is a commutative operation, 
! 
A
!

! 
B
=


! 
A

! 
B ! (3.5.8)
,


similar definitions hold; 

(1b) 
! 
A
! c 
! 
B
= c( 

! 
B

! 
A ! ) (3.5.9)
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(2b) 
! 
C
! (

! 
A
+

! 
B
) =


! 
C
!

! 
A
+

! 
C
!

! 
B
.
 (3.5.10)


Vector Decomposition and the Dot Product 

With these properties in mind we can now develop an algebraic expression for the dot 
product in terms of components. Let’s choose a Cartesian coordinate system with the ! 
vector B pointing along the positive x -axis with positive x -component Bx , i.e., 

B 
! 
= B î . The vector A 

! 
can be written as x 

! 
A = Ax î + Ay ĵ + Az k̂ (3.5.11) 

We first calculate that the dot product of the unit vector î with itself is unity: 

î ! ̂i =| î || ̂i | cos(0) = 1 (3.5.12) 

since the unit vector has magnitude | ̂i |= 1 and cos(0) = 1. We note that the same rule 
applies for the unit vectors in the y and z directions: 

ĵ ! ̂j = k̂ ! k̂ = 1 (3.5.13) 

The dot product of the unit vector î with the unit vector ĵ is zero because the two unit 
vectors are perpendicular to each other: 

î ! ̂j =| î || ̂j | cos(" / 2) = 0 (3.5.14) 

Similarly, the dot product of the unit vector î with the unit vector k̂ , and the unit vector 
ĵ with the unit vector k̂ are also zero: 

î ! k̂ = ĵ ! k̂ = 0 (3.5.15) 

The dot product of the two vectors now becomes 

A 
! 
! B 
! 
= ( Ax î + Ay ĵ + Az k̂) ! Bx î 

= Ax î ! Bx î + Ay ĵ ! Bx î + Az k̂ ! Bx î property (2a) 

= Ax Bx ( î ! ̂i) + Ay Bx ( ĵ ! ̂i) + Az Bx (k̂ ! ̂i) property (1a) and (1b) 
(3.5.16) 

= A B x x 
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This third step is the crucial one because it shows that it is only the unit vectors that 
undergo the dot product operation. 

! 
Since we assumed that the vector B points along the positive x -axis with positive x -
component Bx , our answer can be zero, positive, or negative depending on the x -

! 
component of the vector A . In Figure 3.18, we show the three different cases. 

Figure 3.18 Dot product that is (a) positive, (b) zero or (c) negative. 

The result for the dot product can be generalized easily for arbitrary vectors 

A 
! 
= Ax î + Ay ĵ + Az k̂ (3.5.17) 

and 

B 
! 
= Bx î + By ĵ + Bz k̂ (3.5.18) 

to yield 
! ! 
A ! B = Ax Bx + Ay By + Az Bz (3.5.19) 

! ! ! ! 
Example 3:  Given two vectors, A = 2 î + !3 ĵ + 7 k̂ and B = 5î + ĵ + k̂ , find A B .2 !

! ! 
! = A B + A B + A B A B x x y y z z 

(2)(5) + ( 3)(1) + (7)(2) = 21 = " 

Example 4: Find the cosine of the angle between the vectors A 
! 
= 3 î + ĵ + k̂ and 

B 
! 
= !2î ! 3 ĵ ! k̂ . 

! ! ! ! 
Solution: The dot product of two vectors is equal to " A B cos! where ! is the A B = 

angle between the two vectors. Therefore 
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! ! ! ! 
cos ! = " /A B A B 

= (A B + A B + A B ) /( A 2 + A 2 + A 2 )1/ 2 ( B 2 + B 2 + B 2 )1/ 2 x x y y z z x y z x y z 

= # # (1)( 1)) /((3) 2 2 2 1/ 2 # 2 ( 3) 2 + # 2 1/ 2 ((3)( 2) + (1)( 3) + # + (1) + (1) ) ( ( 2) + # ( 1) ) 

= ( 10) /(11) # 1/ 2 (14) 1/ 2 = #0.806 

! ! ! ! ! ! 
Example 5: Show that if A ! B = A + B , then A is perpendicular to B . 

! ! ! ! ! ! 1/ 2 ! ! ! ! ! ! 1/ 2 
Solution: Recall that A ! B = ((A ! B " A ! B)) = (( " ! 2A B " + " )) .) ( A A B B 

! ! ! ! ! ! 1/ 2 ! ! ! ! ! ! 1/ 2 
Similarly A + B = ((A + B) ( ! A + B)) = ((A A ! + 2A B ! + B B ! )) . So if 
! ! ! ! ! ! ! ! 
A ! B = A , then ! 0 hence A is perpendicular to B .+ B A B = 

Work: 

A typical physics application of the dot product between two vectors involves the ! 
calculation of the work done by a force F on an object that undergoes a displacement !r ! 

. If the force is uniform in space and constant in time during the entire displacement, then 
the work done by the force on the object is given by 

WF = F 
! 
! "r ! (3.5.20) 

3.6 Cross Product 

We shall now introduce our second vector operation, called the “cross product” that takes 
any two vectors and generates a new vector. The cross product is a type of 
“multiplication” law that turns our vector space (law for addition of vectors) into a vector 
algebra (a vector algebra is a vector space with an additional rule for multiplication of 
vectors). The first application of the cross product will be the physical concept of torque 
about a point P that can be described mathematically by the cross product between two 
vectors: a vector from P to where the force acts, and the force vector. 
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Definition: Cross Product 

! ! 
Let A and B be two vectors. Since any two non-parallel vectors form a plane, ! ! 
we define the angle ! to be the angle between the vectors A and B as shown in ! ! ! ! 
Figure 3.19. The magnitude of the cross product A ! B of the vectors A and B ! ! 
is defined to be product of the magnitude of the vectors A and B with the sine of 
the angle ! between the two vectors, 

! ! 
A ! B = ABsin(") , (3.6.1) 

! ! 
where A and B denote the magnitudes of A and B , respectively. The angle ! 
between the vectors is limited to the values 0 !" ! # insuring that sin(!) " 0 . 

Figure 3.19 Cross product geometry. 

! ! 
The direction of the cross product is defined as follows. The vectors A and B form a 
plane. Consider the direction perpendicular to this plane. There are two possibilities: we 
shall choose one of these two (shown in Figure 3.19) for the direction of the cross ! 

A
! 
B using a convention that is commonly called the “right-hand rule”.product !


Right-hand Rule for the Direction of Cross Product 

! ! 
The first step is to redraw the vectors A and B so that their tails are touching. Then ! ! 
draw an arc starting from the vector A and finishing on the vector B . Curl your right 
fingers the same way as the arc. Your right thumb points in the direction of the cross ! ! 
product A ! B (Figure 3.20). 
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Figure 3.20 Right-Hand Rule. 
! ! 

You should remember that the direction of the cross product A ! B is perpendicular to ! ! 
the plane formed by A and B . 

We can give a geometric interpretation to the magnitude of the cross product by writing 
the magnitude as 

! 
A !

!

B = A(Bsin") (3.6.2) 

! ! 
The vectors A and B form a parallelogram. The area of the parallelogram is equal to the 
height times the base, which is the magnitude of the cross product. In Figure 3.22, two 
different representations of the height and base of a parallelogram are illustrated. As ! 
depicted in Figure 3.21(a), the term Bsin(!) is the projection of the vector B in the 

! 
direction perpendicular to the vector B . We could also write the magnitude of the cross 
product as 

! ! 
A ! B = ( Asin(")) B (3.6.3) 

! 
Now the term Asin(!) is the projection of the vector A in the direction perpendicular to 

! 
the vector B as shown in Figure 3.21(b). 

Figure 3.21(a) and 3.21(b) Projection of vectors and the cross product 
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The cross product of two vectors that are parallel (or anti-parallel) to each other is zero 
since the angle between the vectors is 0 (or ! ) and sin(0) = 0 (or sin(! ) = 0 ). 
Geometrically, two parallel vectors do not have a unique component perpendicular to 
their common direction. 

Properties of the Cross Product 

(1)	 The cross product is anti-commutative since changing the order of the vectors cross 
product changes the direction of the cross product vector by the right hand rule: 

! 
A
!

! 
B
= "


! 
B
!

! 
A
 (3.6.4)


!	 ! 
(2) The cross product between a vector c A where c is a scalar and a vector B is 

!
!
 ! 
B)


! 
A !
A ! B = c( (3.6.5)
c 

Similarly, ! 
A
! c 

! 
B
= c( 

! 
A
!

! 
B
)	 (3.6.6)


! !	 ! 
(3) The cross product between the sum of two vectors A and B with a vector C is 

(

! 
A
+

! 
B
) !


! 
C
=


! 
C

! 
B

! 
C

! 
A ! + ! (3.6.7)


Similarly, 
! 
A
! (


! 
B
+

! 
C
) =


! 
C

! 
A

! 
B

! 
A ! + ! (3.6.8)


Vector Decomposition and the Cross Product 

We first calculate that the magnitude of cross product of the unit vector î with ĵ : 

| î ! ĵ |=| î || ̂j |sin(" / 2) = 1 (3.6.9) 

since the unit vector has magnitude | ̂i |=| ĵ |= 1 and sin(! / 2) = 1 . By the right hand rule, 
the direction of î ! ĵ is in the +k̂ as shown in Figure 3.22.  Thus î ! ĵ = k̂ . 
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Figure 3.22 Cross product of î ! ĵ 

x 

We note that the same rule applies for the unit vectors in the y and z directions, 

ĵ ! k̂ = î, k̂ ! î = ĵ (3.6.10) 

Note that by the anti-commutatively property (1) of the cross product, 

ĵ ! î = "k̂, î ! k̂ = " ĵ (3.6.11) 

The cross product of the unit vector î with itself is zero because the two unit vectors are 
parallel to each other, ( sin(0) = 0 ), 

| î ! î |=| î || ̂i | sin(0) = 0 (3.6.12) 

The cross product of the unit vector ĵ with itself and the unit vector k̂ with itself are also 
zero for the same reason. 

ĵ ! ĵ = 0, k̂ ! k̂ = 0 (3.6.13) 

With these properties in mind we can now develop an algebraic expression for the cross 
product in terms of components. Let’s choose a Cartesian coordinate system with the ! 
vector B pointing along the positive x-axis with positive x-component Bx . Then the 

! ! 
vectors A and B can be written as 

A 
! 
= Ax î + Ay ĵ + Az k̂ (3.6.14) 

and 
B 
! 
= Bx î (3.6.15) 

respectively. The cross product in vector components is 

! ! 
î + A ĵ +A ! B = (
 ˆ îk) ! B (3.6.16)
Azy Ax 
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This becomes, using properties (3) and (2),  

A 
! 
! B 
! 
= ( Ax î ! Bx î) + ( Ay ĵ ! Bx î) + ( Az k̂ ! Bx î) 

= Ax Bx ( î ! î) + Ay Bx ( ĵ ! î) + Az Bx (k̂ ! î) (3.6.17) 

= " Ay Bx k̂ + Az Bx ĵ 

The vector component expression for the cross product easily generalizes for arbitrary 
vectors 

A 
! 
= Ax î + Ay ĵ + Az k̂ (3.6.18) 

and 
B 
! 
= Bx î + By ĵ + Bz k̂ (3.6.19) 

to yield 

A 
! 
! B 
! 
= ( Ay Bz " Az By ) î + ( Az Bx " Ax Bz ) ĵ + ( Ax By " Ay Bx ) k̂ . (3.6.20) 

! ! ! ! 
Example 6:  Given two vectors, A = 2 î + !3 ĵ + 7 k̂ and B = 5î + ĵ + 2k̂ , find A?B . 

Solution: 

A 
! 
! B 
! 
= (A B " A B ) î + (A B " A B ) ĵ + (A B " A B ) k̂ y z z y z x x z x y y x 

(( 3)(2) " (7)(1)) î + ((7)(5) " (2)(2)) ĵ + ((2)(1) " ( 3)(5)) ˆ= " " k 

= "13 ̂i + 31 ̂j +17 k̂ 

! ! ! ! 
Example 6: Law of Sines: Prove that B / sin ! = A / sin " and B / sin ! = C / sin " 

! 
using the cross product. (Hint: Consider the area of a triangle formed by three vectors A , 
! ! ! ! ! 
B , and C , where A + B + C = 0 .) 

! ! ! ! ! ! ! ! ! ! ! 
Solution: Since A + B + C = 0 , we have that 0 = A ! (A + B + C) = A ! B + A !C . Thus 
! ! ! ! ! ! ! ! 
A ! B = "A !C or A ! B = A !C . 
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! ! ! ! ! ! ! ! 
From the figure we see that A " B = A B sin ! and A "C = A C sin ! . Therefore 
! ! ! ! ! ! 
A B sin ! = A C sin " , and hence B / sin ! = C / sin " . A similar argument shows that 
! ! 
B / sin ! = A / sin " proving the law of sines. 

Example 8: Show that the volume of a parallelpiped with edges formed by the vectors ! ! ! ! ! ! 
A , B , and C is given by A ! (B"C) . 

Solution: The volume of a parallelpiped is given by area of the base times height. If the ! ! 
base is formed by the vectors B and C , then the area of the base is given by the 

! ! ! ! ! ! 
magnitude of B !C . The vector B !C = B!C n ˆ where n̂ is a unit vector perpendicular 

! 
to the base. The projection of the vector A along the direction n̂ gives the height of the 

! 
parallelpiped. This projection is given by taking the dot product of A with a unit vector 

! 
and is equal to ! ˆ height .A n = Therefore 
A ! (B " C) = A ! ( B " C )n̂ = ( B " C )A ! n̂ = (area)(height) = (volume) . 

!!!!!!!!! 
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