
      
 

   
 

        
      

       
 

 

 
 

  

 
        

   
 
 
   
 

      
 

 
      

 
           

       
          

  
        

     
  

 
           

       
       

         
          

 
 
  

Module 1: Units and Significant Figures
 

1.1 The Speed of Light 

When we observe and measure phenomena in the world, we try to assign numbers to the 
physical quantities with as much accuracy as we can possibly obtain from our measuring 
equipment. For example, we may want to determine the speed of light, which we can 
calculate by dividing the distance a known ray of light propagates over its travel time, 

distance 
speed of light = . (1.1.1) 

time 

In 1983 the General Conference on Weights and Measures defined the speed of 
light to be 

c = 299, 792, 458 meters/second . (1.1.2) 

This number was chosen to correspond to the most accurately measured value of 
the speed of light and is well within the experimental uncertainty. 

1.2 International System of System of Units 

The three quantities – time, length, and the speed of light – are directly 
intertwined. Which quantities should we consider as “base” and which ones as “derived” 
from the base quantities? For example, are length and time base quantities while speed is 
a derived quantity? 

This question is answered by convention. The basic system of units used 
throughout science and technology today is the internationally accepted Système 
International (SI).  It consists of seven base quantities and their corresponding base units: 

Mechanics is based on just the first three of these quantities, the MKS or meter-
kilogram-second system. An alternative metric system to this, still widely used, is the so-
called CGS system (centimeter-gram-second). So far as distance and time measurements 
are concerned, there is also wide use of British Imperial units (especially in the USA) 
based on the foot (ft), the mile (mi), etc., as units of length, and also making use of the 
minute, hour, day and year as units of time. 



  
  

  
  

  
  

  
  

 
  

 
   
 

     
 

      
      

 
 

       
   

     
    

       
 

 
        

       
       
         

        
       

 
 

       
      

 
 

  
 

        
     

        
                                                
            

            

Base Quantity Base Unit 
Length meter (m) 
Mass kilogram (kg) 
Time second (s) 
Electric Current ampere (A) 
Temperature Kelvin (K) 
Amount of Substance mole (mol) 
Luminous Intensity candela (cd) 

We shall refer to the dimension of the base quantity by the quantity itself, for example 

dim length ! length ! L, dim mass ! mass ! M, dim time ! time ! T. (1.2.1) 

1.3 The Atomic Clock and the Definition of the Second 

Isaac Newton, in the Philosophiae Naturalis Principia Mathematica (“Mathematical 
Principles of Natural Philosophy”), distinguished between time as duration and an 
absolute concept of time, 

“Absolute true and mathematical time, of itself and from its own nature, 
flows equably without relation to anything external, and by another name 
is called duration: relative, apparent, and common time, is some sensible 
and external (whether accurate or unequable) measure of duration by 
means of motion, which is commonly used instead of true time; such as an 
hour, a day, a month, a year. ”1. 

The development of clocks based on atomic oscillations allowed measures of 
timing with accuracy on the order of 1 part in 1014 , corresponding to errors of less than 
one microsecond (one millionth of a second) per year. Given the incredible accuracy of 
this measurement, and clear evidence that the best available timekeepers were atomic in 
nature, the second (s) was redefined in 1967 by the International Committee on Weights 
and Measures as a certain number of cycles of electromagnetic radiation emitted by 
cesium atoms as they make transitions between two designated quantum states: 

The second is the duration of 9,192,631,770 periods of the radiation 
corresponding to the transition between the two hyperfine levels of the 
ground state of the cesium 133 atom. 

1.4 The meter 

The meter was originally defined as 1/10,000,000 of the arc from the Equator to 
the North Pole along the meridian passing through Paris. To aid in calibration and ease of 
comparison, the meter was redefined in terms of a length scale etched into a platinum bar 

1 Isaac Newton. Mathematical Principles of Natural Philosophy. Translated by Andrew Motte (1729).
Revised by Florian Cajori. Berkeley: University of California Press, 1934. p. 6. 



      
         

 
 

 
 

 
        

            
 

 
     

           
        

  
 

 
 

  
 

 
 

  

 
  

 

 
 

  

 
 

 
           

       
       

       
          
         

  
 

 
 

          
           

          

preserved near Paris. Once laser light was engineered, the meter was redefined by the 
17th Conférence Générale des Poids et Mèsures (CGPM) in 1983 to be a certain number 
of wavelengths of a particular monochromatic laser beam. 

The metre is the length of the path travelled by light in vacuum during a time 
interval of 1/299 792 458 of a second. 

Example 1: Light Year Astronomical distances are sometimes described in terms of 
light-years (ly). A light-year is the distance that light will travel in one year (yr). How far 
in meters does light travel in one year? 

Solution: Using the relationship distance = (speed of light) ! (time) , one light year 
corresponds to a distance. Since the speed of light is given in terms of meters per second, 
we need to know how many seconds are in a year. We can accomplish this by converting 
units. We know that 

1 year = 365.25 days, 1 day = 24 hours, 1 hour = 60 minutes, 1 minute = 60 seconds 

Putting this together we find that the number of seconds in a year is 

! 24 hours $ ! 60 min $ ! 60 s $
1 year =(365.25 day) & =31,557,600 s . (1.4.1) # & #" 1day &% #" 1 hour % "1 min %

So the distance that light travels in a one year is 

! 299,792,458 m $ ! 31,557,600 s $
1 ly = & (1 yr) = 9.461' 1015 m . (1.4.2) #" 1s %& "# 1 yr %

The distance to the nearest star, Alpha Centauri, is three light years. 

A standard astronomical unit is the parsec. One parsec is the distance at which 
there is one arcsecond = 1/3600 degree angular separation between two objects that are 
separated by the distance of one astronomical unit, 1AU = 1.50 !10 11 m , which is the 
mean distance between the earth and sun. One astronomical unit is roughly equivalent to 
eight light minutes, 1AU = 8.3l-min One parsec is equal to 3.26 light years, where one 
light year is the distance that light travels in one earth year, 1pc = 3.26ly = 2.06 !10 AU 

where 1ly = 9.46 !10 15 m . 

1.5 Mass 

The unit of mass, the kilogram (kg), remains the only base unit in the 
International System of Units (SI) that is still defined in terms of a physical artifact, 
known as the “International Prototype of the Standard Kilogram.” The prototype was 
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made in 1879 by George Matthey (of Johnson Matthey) in the form of a cylinder, 39 mm 
high and 39 mm in diameter, consisting of an alloy of 90 % platinum and 10 % iridium. 
The international prototype is kept at the Bureau International des Poids et Mesures 
(BIPM) at Sevres, France under conditions specified by the 1st Conférence Générale des 
Poids et Mèsures (CGPM) in 1889 when it sanctioned the prototype and declared “This 
prototype shall henceforth be considered to be the unit of mass.” It is stored at 
atmospheric pressure in a specially designed triple bell-jar. The prototype is kept in a 
vault with six official copies. 

Image courtesy of the National Bureau of Standards. 

Figure 1.1 International Prototype of the Standard Kilogram 

The 3rd CGPM (1901), in a declaration intended to end the ambiguity in popular usage 
concerning the word “weight” confirmed that: 

The kilogram is the unit of mass; it is equal to the mass of the international 
prototype of the kilogram. 

There is a stainless steel one-kilogram standard that can travel for comparisons. In 
practice it is more common to quote a conventional mass value (or weight-in-air, as 
measured with the effect of buoyancy), than the standard mass. Standard mass is 
normally only used in specialized measurements wherever suitable copies of the 
prototype are stored. 

Example 2: The International Prototype Kilogram Determine the type of shape and 
dimensions of the platinum-iridium prototype kilogram such that it has the smallest 
surface area for a given volume. The standard kilogram is an alloy of 90 % platinum and 
10 % iridium. The density of the alloy is ! = 21.56 g " cm#3 . You may want to consider 
the following questions: 



 
    

 
   

 
       

  
 

   
 

         
            

   
 
     
 

        
 

 
        

         
         

       
 
     
 

    
 

 
  

  

 
 

 

 
  

  

 
 

 

 
  

  

 
 

 

1) Is there any reason that the surface area of the standard could be important?
 

2) What is the appropriate density to use?
 

3) What shape (that is, sphere, cube, right cylinder, parallelepiped, etc.) has the
 
smallest surface area for a given volume? 

4) Why was a right-circular cylinder chosen? 

Solution: The standard kilogram is an alloy of 90 % platinum and 10 % iridium. The 
density of platinum is 21.45 g ◊cm - 3 and the density of iridium is 22.55 g ! cm "3 . Thus 
the density of the standard kilogram, ! = 21.56 g " cm#3 , and its volume is 

V = m / ! " 1000 g / 22 g # cm$3 " 46.38 cm3 . (1.5.1) 

Corrosion would affect the mass through chemical reaction; platinum and iridium were 
chosen for the standard’s composition as they resist corrosion. 

To further minimize corrosion, the shape should be chosen to have the least surface area. 
Ideally, this would be a sphere, but as spheres roll easily they become impractical, 
whereas cylinders have flat surfaces which prevent this. The volume for a cylinder or 
radius r and height h is a constant and given by 

V = !r 2h . (1.5.2) 

The surface area can be expressed in terms of the radius r as 

2 2 2VA = 2!r + 2!rh = 2!r + . (1.5.3) 
r 

To find the smallest surface area, minimize the area with respect to the radius 

dA 2V 
= 4!r " = 0 . (1.5.4) 

dr r 2 

Solve for the radius 

3 V !r 2h r = = . (1.5.5) 
2! 2! 

Thus the radius is one half the height, 



 
  

  

 
  

 

 
  

  

 
 

 
 

 
          

          
         

    
 

        
           

      
          

 
 

  
 

               
         

         

                 
 

              
    

 
     
 

              
    

 
     
 

h r = . (1.5.6) 
2 

For the standard mass, the radius is 

1 3 1 3 
" V % " 46.38 cm3 % 

r = = ( 1.95 cm . (1.5.7) '$ ' $# 2! & # 2! & 

Twice this radius is the diameter of the standard kilogram. 

Alternative Definition of Mass 

Since the prototype kilogram is an artifact, there are some intrinsic problems associated 
with its use as a standard. It may be damaged, or destroyed. The prototype gains atoms 
due to environment wear and cleaning, at a rate of change of mass corresponding to 
approximately 1 µg / year (1 µg ! 1microgram ! 1" 10-6 g ). 

Several new approaches to defining the SI unit of mass (kg) are currently being 
explored. One possibility is to define the kilogram as a fixed number of atoms of a 
particular substance, thus relating the kilogram to an atomic mass. Silicon is a good 
candidate for this approach because it can be grown as a large single crystal, in a very 
pure form.  

Example 3: Mass of a Silicon Crystal 

A given standard unit cell of silicon has a volume V0 and contains N0 atoms. The 
number of molecules in a given mole of substance is given by Avogadro’s constant 
N A =  6.0221415 ! 1023  mole-1 . The molar mass of silicon is given by Mmolar . Find the 

mass m of a volume V in terms of V0 , N0 , V , Mmolar , and N A . 

Solution: The mass m0 of the unit cell is the density ! of silicon cell multiplied by the 
volume of the cell V0 , 

m0 = !V0 . (1.5.8) 

The number of moles in the unit cell is the total mass, m0 , of the cell, divided by the 
molar mass Mmolar , 

(1.5.9) n0 = m0 / Mmolar = !V0 / Mmolar . 



               

  
 

 
  

  

 
                

 
 
     
 

 
 

 
  

  

 
  

 

 
  

  

 
          

                 
         

       
 

 

The number of atoms in the unit cell is the number of moles n0 times the Avogadro 
constant, N A , 

!V0 N A (1.5.10) N0 = n0 N A = 
Mmolar 

The density of the crystal is related to the mass m of the crystal divided by the volume V 
of the crystal, 

! = m / V (1.5.11) 

So the number of atoms in the unit cell can be expressed as 

mV0 N A (1.5.12) N0 = 
VMmolar 

So the mass of the crystal is 

Mmolar V N0 (1.5.13) 
N A V0 

m = 

The molar mass, unit cell volume and volume of the crystal can all be measured directly. 
Notice that Mmolar / N A is the mass of a single atom, and (V / V0 )N0 is the number of 
atoms in the volume. This approach is therefore reduced to the problem of measuring the 
Avogadro constant, N A , with a relative uncertainty of 1 part in 108, which is equivalent 
to the uncertainty in the present definition of the kilogram. 



    
 

 
 

 
 

 
 

 
 

          
  
     
     
 
     
 
     
  

           
             
                   

                    
    

 
   

 
                       

                     
        

 
            

                
               

 
 

1.6 Radians and Steradians 

Radians 

Consider the triangle drawn in Figure 1.6.1 

Figure 1.2 Trigonometric relations 

You know the basic trigonometric functions of an angle ! in a right-angled triangle 
ONB : 

sin(!) = y / r , (1.6.1) 

cos(!) = x / r , (1.6.2) 

tan(!) = y / x (1.6.3) 

It is very important to become familiar with using the measure of the angle ! 
itself as expressed in radians [rad]. Let ! be the angle between two straight lines OX 
and OP . If we draw a circle of any radius r centered at O , the lines OP and OX cut 
the circle at the points A and B where OA = OB = r . If the length of the arc AB is s , 
the radian measure of ! is given by  

! = s / r , 

and is the same for circles of all radii centered at O -- just as the ratios y / r and y / x 

are the same for all right triangles with the angle ! at O . As ! approaches 360! , s 
approaches the complete circumference 2!r of the circle, so that 360! = 2! rad . 

Let’s compare the behavior of sin(!) , tan(!) and ! itself for small angles. One 
can see from the diagram that s / r > y / r . It is less obvious that y / x > ! . It is very 
instructive to plot sin(!) , tan(!) , and ! as functions of ! [rad] between 0 and ! / 2 
on the same graph (see Figure 1.3). 



 
 

 
 

             
          

 
 

  
 

         
       

    
 

 

 

 
         

     
 

 

 

 
   
 
     

Figure 1.3 Radians compared to trigonometric functions. 

For small ! , the values of all three functions are almost equal. But how small is 
“small”? An acceptable condition is for ! << 1 in radians. We can show this with a few 
examples. 

Example 4: Small Angle Approximation 

Since 360! = 2! rad , 57.3! = 1 rad , so an angle 6! ! (6! )(2" rad / 360o ) ! 0.1 rad when 
expressed in radians. Use your pocket calculator to verify the following values of sin(!) 
and tan! to 4-digit accuracy for ! " 0.1rad : 

! [rad] = 0.1000 
sin(!) = 0.0998 
tan(!) = 0.1003. 

So the spread of values in this case is less than ±0.3% . Again using your calculator, fill 
in the blanks below for ! = 15! , which is about equal to 0.25 rad : 

! [rad] = 0.2618 
sin(!) = 

tan(!) = . 

You see that provided ! is not too large 

sin(!) ! tan(!) ! ! (1.6.4) 



 
         

 
 
 

 
 

          
                

           
            

 
 
   
 
                

             
              

 
 
          

        
        

       
 

 
   

 
           

      
 

 
       

 
 
    
 

    
  
  
 

 
 

  

 

can be used almost interchangeably, within some small percentage error. This is the 
basis of many useful approximations in physics calculations. 

Steradians 

The steradian (sr) is the unit of solid angle that, having its vertex in the center of a sphere, 
cuts off an area of the surface of the sphere equal to that of a square with sides of length 
equal to the radius of the sphere. The conventional symbol for steradian measure is ! 
the uppercase greek “Omega.” The total solid angle !sphere of a sphere is then found by 
dividing the surface area of the sphere by the square of the radius, 

!sphere = 4"r2 / r2 = 4" (1.6.5) 

Note that this result is independent of the radius of the sphere. Note also that it 
was implied that the solid angle was measured from the center of the sphere (the radius r 
is constant). It turns out that the above result does not depend on the position of the 
vertex as long as the vertex is inside the sphere. 

“The SI unit, candela, is the luminous intensity of a source that emits 
monochromatic radiation of frequency 540 ! 1012 s-1 , in a given direction, and that has a 
radiant intensity in that direction of 1/683 watts per steradian.” Note that "in a given 
direction" cannot be taken too literally. The intensity is measured per steradian of spread, 
so if the radiation has no spread of directions, the luminous intensity would be infinite. 

1.7 Dimensions of Commonly Encountered Quantities 

Many physical quantities are derived from the base quantities by set of algebraic relations 
defining the physical relation between these quantities. The dimension of the derived 
quantity is written as a power of the dimensions of the base quantitites, 

For example velocity is a derived quantity and the dimension is given by the 
relationship 

dim velocity = (length)/(time) = L ! T-1 . (1.6.6) 

where L ! length , T ! time . 

Force is also a derived quantity and has dimension 

(mass)(dim velocity) 
dim force = . (1.6.7) 

(time) 



    
 

 

 
 

  

 
  
 
    
 

 
 

 
 

  

 
 

 
    
 

 
 

 
 

  

 
 

 
 

 

 
 

 

   
  

 
 

where M ! mass .We could express force in terms of mass, length, and time by the 
relationship 

(mass)(length) 
= M ! L ! T-2 . (1.6.8) dim force = 

(time)2 

The derived dimension of kinetic energy is 

dim kineticenergy = (mass)(dim velocity)2 , (1.6.9) 

which in terms of mass, length, and time is 

(mass)(length)2 

= M ! L2 ! T-2 (1.6.10) dim kineticenergy = 
(time)2 

The derived dimension of work is 

dim work = (dim force)(length) , (1.6.11) 

which in terms of our fundamental dimensions is 

(mass)(length)2 

= M ! L2 ! T-2 (1.6.12) dim work = 
(time)2 

So work and kinetic energy have the same dimensions.
 

Power is defined to be the rate of change in time of work so the dimensions are
 

dim work (dim force)(length) (mass)(length)2 

= M ! L2 ! T-3 (1.6.13) dim power = = = 
time time (time)3 

In Table 1.1 we include the derived dimensions of some common mechanical 
quantities in terms of mass, length, and time. 



 
 

    
 

   
   

   

     
     

   
  

   
  

   
  

   
  

   
  

   
  

   
  

   
  

   
   

   
   

   
  

   
  

       
 
 

 
 

        
 

 
 

  
         

  
            

            
  

 
 

 
              

         

Table 1.1 Dimensions of Some Common Mechanical Quantities 

M ! mass , L ! length , T ! time 

Quantity Dimension MKS unit 
Angle dimensionless Dimensionless =  radian 
Steradian dimensionless Dimensionless =  radian2 

Area L2 m2 

Volume L3 m3 

Frequency T-1 s!1 = hertz = Hz 
Velocity L ! T-1 m ! s "1 

Acceleration L ! T-2 m ! s "2 

Angular Velocity T-1 rad ! s "1 

Angular Acceleration T-2 rad ! s "2 

Density M ! L-3 kg ! m "3 

Momentum M ! L ! T-1 kg ! m ! s "1 

Angular Momentum M ! L2 ! T-1 kg ! m2 ! s "1 

Force M ! L ! T-2 kg ◊m ◊s - 2 = newton = N 
Work, Energy M ! L2 ! T-2 kg ! m2 ! s "2 = joule = J 
Torque M ! L2 ! T-2 kg ! m2 ! s "2 

Power M ! L2 ! T-3 kg ! m2 ! s "3 = watt = W 
Pressure M ! L-1 ! T-2 kg ! m "1 ! s "2 = pascal= Pa 

Dimensional Analysis 

There are many phenomena in nature that can be explained by simple relationships 
between the observed phenomena. 

Example 5: Period of a Pendulum 

Consider a simple pendulum consisting of a massive bob suspended from a fixed point by 
a string. Let Tperiod denote the time (period of the pendulum) that it takes the bob to 
complete one cycle of oscillation. How does the period of the simple pendulum depend 
on the quantities that define the pendulum and the quantities that determine the motion? 

Solution: 

What possible quantities are involved? The length of the pendulum l , the mass of the 
pendulum bob m , the gravitational acceleration g , and the angular amplitude of the bob 



           
          

 
 
      
 
 

    
 

 
 

 
 

 
    

     
     

     
     

 
    

 
  
         

       
         

      
  

        

   
 
 

 
  

  

 
               

         
 

 

 
   

  

 
         

 
 

!0 are all possible quantities that may enter into a relationship for the period of the 
swing. Have we included every possible quantity? We can never be sure but let’s first 
work with this set and if we need more than we will have to think harder! 

Our problem is then to find a function f such that 

T = f (l,m, g,! ) (1.6.14) period 0 

We first make a list of the dimensions of our quantities as shown in Table 1.2.  Choose 
the set: mass, length, and time, to use as the base dimensions. 

Table 1.2 Dimensions of quantities that may describe the period of pendulum 

Name of Quantity Symbol Dimensional Formula 
Time of swing t T 
Length of pendulum l L 
Mass of pendulum m M 
Gravitational acceleration g L ! T-2 

Angular amplitude of swing !0 
No dimension 

Our first observation is that the mass of the bob cannot enter into our relationship, 
as our final quantity has no dimensions of mass and no other quantity can remove the 
dimension of the pendulum mass. Let’s focus on the length of the string and the 
gravitational acceleration. In order to eliminate length, these quantities must divide each 
other in the above expression for Tperiod must divide each other. If we choose the 
combination l / g , the dimensions are 

length 
= (time)2 (1.6.15) 

length/(time)2dim[l / g] = 

It appears that the time of swing is proportional to the square root of this ratio. We have 
an argument that works for our choice of constants, which depend on the units we choose 
for our fundamental quantities. Thus we have a candidate formula 

1/ 2 
! l $ 

(1.6.16) Tperiod ! # &" g %

(in the above expression, the symbol “ : ” represents a proportionality, not an 
approximation). 



          

   
    

 
 

 
  

  

 
   

          

   
 

 
  

  

 

Since the angular amplitude !0 is dimensionless, it may or may not appear. We 

can account for this by introducing some function y !0( ) into our relationship, which is 
beyond the limits of this type of analysis. Then the time of swing is 

1/ 2 
" l % 

(1.6.17) = y !Tperiod ( ) $# g & ' 

We shall discover later on that y !0( ) is nearly independent of the angular amplitude !0 

for very small amplitudes and is equal to y !0( ) = 2" , 

1/ 2 
"
 l %
Tperiod = 2!
 (1.6.18)
 $#
 '&
g 
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