
   
   

 
   

 
          

          

 
         

 
        

 
             

        
 
 

           
  

 
 

        
 

             
    

 
 

   
 

               
 

   
 

         
        

             
          

    
 
 

            

Concept of Force
 
Challenge Problem Solutions
 

Problem 1: 

Force Applied to Two Blocks Two blocks sitting on a frictionless table are pushed from !
the left by a horizontal force F , as shown below. 

a)	 Draw a free-body diagram for each of the blocks. 

b)	 What is the acceleration of the blocks? 

c)	 Express, in terms of the quantities given in the figure, the magnitude of the 
contact force between the two blocks. Briefly explain why your make sense. 

Suppose now a force of equal magnitude but opposite direction is applied to the block on 
the right. 

d)	 What is the acceleration of the blocks? 

e)	 What is the magnitude of the contact force between the two blocks in this case? 
Briefly explain why your make sense. 

Problem 1 Solutions: 

a) Take the positive direction to be to the right in the figure below. 

!	 ! 
There is a contact force C of magnitude C ! C on each block; this force is directed 
to the left on block 1 and to the right on block 2. There is no friction; the vertical 
normal forces (between the table and the blocks) cancel the weights, and so vertical 
forces will be neglected. 

b) From Newton’s Third Law, the acceleration of the block on the left is given by 



 
   
 

        
 
   
 

            
         

 

 

  

  

 
           
                

 
           

  
 

   

 
          

             
      

 
 

             
 

  
 

     
 

 
  

  

 
       

            
 

m a1 = F ! C (1.1)1

and the acceleration of the block on the right is given by 

m a2 = C . (1.2)2

Note that the sign assigned to C is different for the different blocks. Adding Equations 
(1.1) and (1.2), and setting a1 = a2 = a (the blocks move together) yields 

(m1 + m2 )a = F 
F (1.3)

a = . 
m1 + m2 

It should not be surprising that when the blocks move together, the common acceleration 
is that of a single object of mass m1 + m2 subject to a single force of magnitude F . 

c) Substituting the result given in (1.3) into either of Equations (1.2) or (1.1) yields, after 
minor algebra, 

mC = F 2 . (1.4)
m + m1 2 

Note that if m2 ! m1 , C / F ! 0 ; relatively little force is needed to accelerate the much 
smaller block. In the limit m1 ! m2 , C ! F ; the presence of the small block does not 
affect the acceleration of the large block. 

d) The free body force diagrams onm each block for this case are shown below. 

Equations (1.1) and (1.2) become 

m1 a1 = F ! C 
(1.5) 

m2 a2 = C ! F. 

Adding these expressions and using a1 = a2 = a again yields a = 0 immediately; as 
expected, if there is no net force on the system, there is no acceleration. 



         
        

 

e) Using a1 = a2 = a = 0 in either expression in Equation (1.5) gives C = F ; neither 
block accelerates, so there must be zero net force on each block. 



         
 

            
       

   
 
 

          
            
      

Problem 2: Forces Responsible for Acceleration of Car 

When a car accelerates forward on a level roadway, which force is responsible for this 
acceleration? State clearly which body exerts this force, and on which body (or bodies) 
the force acts. 

Problem 2 Solution: The friction force of the road acting on the drive wheels accelerates 
the car forward. These days, virtually all cars are front-wheel drive, so the road acting on 
the front wheels causes the acceleration. 



     

          
               

           
     

 
 

   
 

           
         

           
               

            
         

            
           

          
         

 

Problem 3: Spring Scale 

You are standing on a spring bathroom scale in an elevator and you look at the scale 
while the elevator is at rest with respect to the ground. Describe how the scale readings 
change as the elevator uniformly accelerates, moves at a constant velocity, and then 
uniformly decelerates. Explain your answer. 

Problem 3 Solution: 

The spring scale measures the contact force that the scale exerts on you by converting 
how much the spring is compressed into a scale reading (often a dial). By Newton’s 
Third Law, the scale applies an equal and opposite force on your feet, which we shall 
refer to as the contact force on you. The difference between the contact force and the 
gravitation force must equal the product of your mass and your acceleration; the contact 
force is greater than the gravitation force and the scale reading increases. When you are 
moving at constant speed, the contact force is equal to the gravitation force, hence the 
scale reading returns to its original value. When you decelerate, the contact force is now 
less than the gravitation force since your acceleration is now in the direction of the 
gravitation force. Thus the scale reading decreases from the original value. 



     
 

       
            

               
            

        
 

 
 
 

    
 

           
          

        
             

           
 

 

 
 

            
 
   
 
 

       
 
  

Problem 4: Hooke’s Law 

Consider a spring with negligible mass that has an unstretched length l0 = 8.8 "10 !2m . 
A body with mass m1 = 1.5 "10 !1 kg is suspended from one end of the spring. The other 
end (the upper end) of the spring is fixed. After a series of oscillations has died down, 
the new stretched length of the spring is l = 9.8 "10 !2 m . Assume that the spring satisfies 
Hooke’s Law when stretched. What is the spring constant? 

Problem 4 Solution: 

There are two forces acting on the body: the gravitational force between the body and the ! ! 
earth, F = !m g k̂ , and the force between the body and the spring, F = F k̂ . The b. e 1 b,s b,s 

interaction between the body and the spring stretches the spring a distance (l ! l0 ) from 
its equilibrium length. By Hooke’s Law the magnitude of this force is Fb,s = k l ( ! l0 ) . The 

! ˆforce acting on the spring is thus Fb,s = k l ( ! l0 ) k . The force diagram for the spring is 
shown below. 

Since the spring is in static equilibrium, the sum of the forces is zero, 

! ! ! ! 
F = F + F = !m g k̂ + k l ( ! l ) k̂ = 0 . (4.1)b, total b,e b,s 1 0 

We can solve this equation for the spring constant, 



  

!1 !2m g (1.5 "10 kg)(9.8 m s # )k = 1 = !2 !2l ! l0 9.8 "10 m ! 8.8 "10 m
 

=147 N m !1.
# (4.2) 



      
 

          
           

            
    

 

 
 
 

    
 

            
        

          
             

            
            

             
          
        

 
 

 
 

         
 
   
 
 

      
 

Problem 5: Force Hooke’s Law 

A body of mass m is suspended from a spring with spring constant k in configuration 
(a) and the spring is stretched 0.1m . If two identical bodies of mass m / 2 are suspended 
from a spring with the same spring constant k in configuration (b), how much will the 
spring stretch? Explain your answer. 

Problem 5 Solution: 

In part (a), assume that the spring is directly connected to the body. There are two forces ! 
acting on the body: the gravitational force between the body and the earth, Fb.e = !mg k̂ , 

! 
and the force between the body and the spring, F = F k̂ . (The spring is actually b.s b.s 

connected to the rope, but since the rope is massless, the tension in the rope is uniform 
and the spring force transmits through the rope so the tension in the rope is equal to the 
magnitude of the spring force). The interaction between the body and the spring stretches 
the spring a distance x from its equilibrium length. By Hooke’s Law the magnitude of ! 
this force is F = k x and so the force acting on the spring is F = k x k̂ .b,s b,s 

The force diagram on the body is shown below 

Theses two forces on the body balance since the body is in equilibrium, and so 

! ! ! ! 
FT = F + F = !mg k̂ + k x k̂ = 0 (5.1)b b.e b.s 

Therefore the spring stretches a distance 



   
 
 

         
            
   

 

 
 

     
 
   
 

             
      

 
   
 

             
           

 
   
 

      
 
   
 
 

               
 
   
 
 

x = mg / k . (5.2) 

In configuration (b), the forces acting on the body are the gravitational force between the 
body and the earth, and the force between the rope and the body. The force diagram is 
shown in the figure below. 

Since the body is in static equilibrium, 

! ! ! !
TF = F + F = !(mg / 2 )k̂ + F k̂ = 0 . (5.3)b b.e b.r b,r 

Therefore the magnitudes of the force of the rope (tension in the rope) and the 
gravitational force on the body are equal; 

mg / 2 = Fb,r . (5.4) 

Suppose the spring stretches by an amount x1 . Just as in part (a), the tension in the rope is 
uniform, so the tension in the rope is equal to the magnitude of the spring force. 

F = k x . (5.5)b.r 1 

Combining Equations (5.4) and (5.5) yields 

k x 1 = (m / 2) g . (5.6) 

Thus the spring stretches by half the amount as in part (a), as given by Equation (5.2), 

x1 = (m / 2) g / k = x / 2 . (5.7) 



      
 

            
            

 

 
 

        
       

      
 

         
 

 
 

   
 

          
            

     
 
   
 

               
      

              
 
   
 

           
    

 

Problem 6: Equivalent Spring Constants 

Find the effective spring constants for the two systems shown in figures (a) and (b). The 
block has mass m and the two springs having spring constants k1 and k2 respectively, 

The spring with spring constant k1 is attached to the ceiling and one end of the spring 
with spring constant k2 , and the other end of the second spring is attached to the block 
(the springs are attached in series). 

a)	 Each spring is attached to the ceiling and the block (the springs are attached in 
parallel). 

Problem 6 Solution: 

a)	 Each spring is stretched by a (possibly) different extension. Let !x1 represent the 
extension of the upper spring and !x2 represent the extension of the lower spring. The 
total extension for both springs is 

!x = !x + !x .	 (6.1)total 1 2 

The magnitude of the spring force is the same in each spring; that is, the spring force can 
be considered as being transmitted uniformly through the two springs. The two springs 
can be considered as a single spring. The spring force is for a massless spring is then 

! 
F = k !x = k !x	 (6.2)1	 1 2 2 

!	 ! 
Note that this last equation implies that !x1 = F / k1 and !x2 = F / k2 . Since the total 
extensions add, Equation (6.1) becomes 



   

 
 

          
            

    
 

   

 
         

 

   

 
           

   
 

   

 
 

      
 
 

         
      

 
   
 

         
            

 
   
 

         
         

 
   

! ! 
F F 

. (6.3)!xtotal = !x1 + !x = +2 k1 k2 

! 
The equivalent spring is under the same tension (same spring force), F = k!"x , where total 

k! is the equivalent spring constant when the two springs are replaced by one. The total 
displacement is therefore 

! 
F 

! = . (6.4)xtotal k" 

Substitute Equation (6.4) for the total displacement into Equation (6.3), yielding 

! ! ! 
F F F 

. (6.5)= +
k! k1 k2 

! 
The magnitude F of the common force cancels from Equation (6.5), and the equivalent 
spring constant k! is given by 

1 1 1 . (6.6)= +
k! k1 k2 

The spring constants for springs connected in series add inversely. 

b) When springs are connected in parallel (side by side), each spring adds to the total 
force that an equivalent spring would apply, 

F = F + F . (6.7)total 1 2 

Since both springs stretch the same amount !x , spring 1 exerts a force F1 = k1 !x and 
spring 2 exerts a force F2 = k2 !x . Therefore the total force in Equation (6.7) becomes 

Ftotal = k1 !x + k2 !x = (k1 + k2 )!x . (6.8) 

The equivalent spring (by definition) would be held under the same spring force F and total

stretched the same amount !x , so the equivalent spring constant is found from 

F = k!"x . (6.9)total



 
    

 
   
 

         
 
   

Substituting Equation (6.9) into Equation (6.8) yields 

k!"x = k1 "x + k2 "x . (6.10) 

Therefore the equivalent spring constant for two springs connected in parallel adds; 

k! = k1 + k2 . (6.11) 



        
 

              
            

               
          

 
              

 
            

 
 

   
 

            
          
           

 

 
 

               
 

   

 
 

   
 
   
 

        
        

 

   

Problem 7: Pulling a Rope Attached to Two Trees 

Suppose a rope is tied rather tightly between two trees that are 30 m apart. You grab the 
middle of the rope and pull on it perpendicular to the line between the trees with as much 
force as you can. Assume this force is 1000 N (about 225 lb ), and the point where you 
are pulling on the rope is h = 1m from the line joining the trees. 

a) What is the magnitude of the force tending to pull the trees together? 

b) Give an example of a situation where you think this may be of practical use. 

Problem 7 Solutions: 

a) The various forces involved are shown in Figure 2. The î -direction is to the right in 
the figure, and the ĵ -direction is down in the figure, in the direction of the applied force 
! 
F . Note that the figure is not to scale ( L h / ! 30 ). 

The equations for force equilibrium, at the point where the force is applied, are: 

î :T cos ! "T cos ! = 0 
(7.1)

ĵ : 2T sin ! " F = 0. 

From the second equation in (7.1), T = F /(2sin ! ) .  With, L = 30m and h = 1m , 

tan ! = h / (L / 2 )= 1/15 #! = tan "1 (1/15 )= 3.81 ° # sin ! = 0.067 . (7.2) 

Note that the small angle approximation sin ! ! tan ! = Lh /( / 2) is certainly valid in this 
situation. The tension in the rope is then given by 

T = 
F = (1000 N)"15/ 2 = 7500 N . (7.3)

2sin ! 



  
 

            
         
            

             
          

   

b) If the applied force is vertically downward, you’re walking a tightrope, and the trees 
should be big enough to hold up to roughly 7-8 times your weight. If the applied force is 
horizontal, maybe one of the trees will come down, and you might have firewood without 
having to resort to a chainsaw. If one end of the rope is attached to a large enough tree 
and the other to a car in a ditch, you can apply several times the pulling force to try to 
move the car. 



 
    

 
            

            
       

            
                

   
 

 
 
 

   
 
 

Problem 8: Climbing a Rope 

A person clings to a rope (assumed massless) that passes over a pulley. The person is 
balanced by a block of mass m hanging at the other end of the rope. Initially both the 
person and block are motionless. The person then starts climbing the rope by pulling on it 
with a constant force in order to reach the block. The person moves a distance L relative 
to the rope. Does the block move as a result of the person’s climbing? If so, in which 
direction and by how much? 

Problem 8 Solution: 
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The force diagrams are shown in the above figure. As the person pulls up on the rope, 
there is a force down on the rope, creating a tension in the rope. This tension is 
transmitted through the rope, and so is also the force on the object. Both the person and 
block satisfy Newton’s Second Law, 

mg !T = ma y ; (8.1) 

the person and the block accelerate upwards with the same acceleration. 

The length of the rope between the person and the block is 

l = y1 +! R + y2 , (8.2) 

where R is the radius of the pulley. As the person climbs, y1 and y2 change by the 
same (negative) amount. So, if a length of rope L passes through the person’s hands, 
both the person and the object rise a distance L / 2 . 
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