
Module 12: Work and the Scalar Product 
 
12.1 Scalar Product (Dot Product) 
 
We shall introduce a vector operation, called the “dot product” or “scalar product” that 
takes any two vectors and generates a scalar quantity (a number). We shall see that the 
physical concept of work can be mathematically described by the dot product between 
the force and the displacement vectors. 
 
 Let A

!
 and B

!
 be two vectors. Because any two non-collinear vectors form a 

plane, we define the angle !  to be the angle between the vectors A
!

 and B
!

 as shown in 
Figure 12.1.  Note that !  can vary from 0  to ! . 
 

 
Figure 12.1 Dot product geometry. 

 
Definition: Dot Product 

 
The dot product   

!
A !
!
B  of the vectors A

!
 and B

!
 is defined to be product of the 

magnitude of the vectors A
!

 and B
!

 with the cosine of the angle !  between the 
two vectors: 
 
     A

!"
!B
!"
= ABcos(")  (12.1.1) 

 
Where | |A = A

!
 and | |B = B

!
 represent the magnitude of A

!
 and B

!
 respectively.  

The dot product can be positive, zero, or negative, depending on the value of 
cos! . The dot product is always a scalar quantity. 

 
The angle formed by two vectors is therefore 
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 (12.1.2) 

 
The magnitude of a vector   

!
A  is given by the square root of the dot product of the vector 

  
!
A  with itself.  



 
 

   
!
A = (

!
A !
!
A)1/ 2  (12.1.3) 

 
We can give a geometric interpretation to the dot product by writing the definition as  
 
     

!
A !
!
B = ( Acos(")) B  (12.1.4) 

 
In this formulation, the term cosA !  is the projection of the vector B

!
 in the direction of 

the vector B
!

. This projection is shown in Figure 12.2(a). So the dot product is the 
product of the projection of the length of A

!
 in the direction of B

!
 with the length of B

!
. 

Note that we could also write the dot product as  
 
     

!
A !
!
B = A(Bcos("))  (12.1.5) 

 
Now the term   Bcos(!)  is the projection of the vector B

!
 in the direction of the vector A

!
 

as shown in Figure 12.2(b). From this perspective, the dot product is the product of the 
projection of the length of  B

!
 in the direction of A

!
 with the length of A

!
. 

 

  
 

Figure 12.2(a) and 12.2(b)  Projection of vectors and the dot product. 
 
From our definition of the dot product we see that the dot product of two vectors that are 
perpendicular to each other is zero since the angle between the vectors is / 2!  and 
 cos(! / 2) = 0 .  
  
We can calculate the dot product between two vectors in a Cartesian coordinates system 
as follows. Consider two vectors 

    
!
A = Ax î + Ay ĵ+ Az k̂  and 

    
!
B = Bx î + By ĵ+ Bz k̂  

Recall that  
 

 
  

î ! î = ĵ ! ĵ = k̂ ! k̂ = 1
î ! ĵ = ĵ ! k̂ = î ! k̂ = 0

. (12.1.6) 

 
The dot product between   

!
A  and   

!
B  is then 

 



 
   
!
A !
!
B = Ax Bx + Ay By + Az Bz  (12.1.7) 

 
The time derivative of the dot product of two vectors is given by 
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, (12.1.8) 

 
In particular when  

!
A =
!
B , then the time derivative of the square of the magnitude of the 

vector  
!
A  is given by 
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12.2 Kinetic Energy and the Dot Product 
 
For an object undergoing three-dimensional motion, the velocity of the object in 
Cartesian components is given by 

    
!v = vx î + vy ĵ+ vzk̂ . Recall that the magnitude of a 

vector is given by the square root fo the dot product of the vector with itself, 
 
 

    
A !
!
A ! (

!
A "
!
A)1/ 2 = ( Ax

2 + Ay
2 + Az

2 )1/ 2  (12.2.1) 
 
Therefore the square of the magnitude of the velocity is given by the expression  
 
 

    
v2 ! (!v " !v) = vx

2 + vy
2 + vz

2  (12.2.2) 
 
Hence the kinetic energy of the object is given by 
 

 
    
K =

1
2

m(!v ! !v) =
1
2

m(vx
2 + vy

2 + vz
2 )  (12.2.3) 

 
12.3 Work and the Dot Product 
 
Work is an important physical example of the mathematical operation of taking the dot 
product between two vectors. Recall that when a constant force acts on a body and the 
point of application of the force undergoes a displacement along the x -axis, only the 
component of the force along that direction contributes to the work, 
 



  W = Fx!x . (12.3.1) 
 
 Suppose we are pulling a body along a horizontal surface with a force F

!
. Choose 

coordinates such that horizontal direction is the x -axis and the force F
!

 forms an angle 
!  with the positive x -direction. In Figure 12.3 we show the force vector x y

ˆ ˆF F= +F i j
!

 

and the displacement vector of the point of application of the force ˆx! = !x i! . Note that 
ˆx! = !x i!  is the component of the displacement and hence can be greater, equal, or less 

than zero (but is shown as greater than zero in the figure for clarity). 
 

 
 

Figure 12.3 Force and displacement vectors 
 
The dot product between the force vector F

!
 and the displacement vector !x!  is  

 
 ˆ ˆ ˆ( ) ( )x y xF F x F x!" = + ! " = "F x i j i

! ! . (12.3.2) 
 
The work done by the force is then 
 
 W! = "!F x

! ! . (12.3.3) 
 
In general, the angle !  takes values within the range !" # $ # "  (in Figure 2.3, 
0 / 2! "# # ).  Since the  x -component of the force is Fx = F cos(!)  where | |F = F

!
 

denotes the magnitude of F
!

, the work done by the force is  
 
 ( cos( ))W F x!= "# = #F x

! ! . (12.3.4) 
 
 
12.3.1 Worked Example  
 
An object of mass   m = 4.0 kg , starting from rest, slides down an inclined plane of length 

  l = 3.0m . The plane is inclined by an angle of  ! = 300  to the ground. The coefficient of 
kinetic friction is   µk = 0.2 . 
 



 
 

a) What is the work done by each of the three forces while the object is sliding down 
the inclined plane? 

 
b) For each force, is the work done by the force positive or negative? 

 
c) What is the sum of the work done by the three forces?  Is this positive or 

negative? 
 
Solution: Choose a coordinate system with the origin at the top of the inclined plane and 
the positive  x -direction pointing down the inclined plane, and the positive y -direction 
pointing towards the upper right as shown in the figure. 
 
 

                
 
While the object is sliding down the inclined plane, three uniform forces act on the 
object, the gravitational force which points downward and has magnitude  

Fg = mg , the 
normal force  N  which is perpendicular to the surface of the inclined plane, and  the 
friction force which opposes the motion and is equal in magnitude to  fk = µk N . A force 
diagram on the object is shown below. 
 

 
 



In order to calculate the work we need to determine which forces have a component in 
the direction of the displacement. Only the component of the gravitational force along the 
positive x-direction   

Fgx = mg sin!  and the friction force are directed along the 
displacement and therefore contribute to the work. We need to use Newton’s Second Law 
to determine the magnitudes of the normal force. Because the object is constrained to 
move along the positive x-direction,   

ay = 0 , Newton’s Second Law in the   ĵ -direction 
 

  N ! mg cos" = 0  
 
Therefore   N = mg cos!  and the magnitude of the friction force is   fk = µk mg cos! . 
 
With our choice of coordinate system with the origin at the top of the inclined plane and 
the positive x-direction pointing down the inclined plane, the displacement of the object 
is given by the vector     !

!r = !x î . 
 

 
 

The vector decomposition of the three forces are 
    
!
Fg = mgsin! î " mgcos! ĵ , 

    
!
Ff = !µk mgcos" î ,  and     

!
FN = mgcos! ĵ . Then the work done by the friction force is 

negative and given by 
 
 

    
Wf =

!
Ff ! "

!r = #µk mgcos$ î ! l î = #µk mgcos$l < 0 . 
  
Substituting in the appropriate values yields 
 

  
Wf = !µk mg cos"l = !(0.2)(4.0kg)(9.8m # s-2 )(3.0m)(cos(30o )(3.0m) = !20.4 J  

 
The work done by the gravitational force is positive and given by 
 

    
Wg =

!
Fg ! "

!r = mgsin# î $ mgcos# ĵ( ) ! l î = mglsin# > 0 . 
 
Substituting in the appropriate values yields 



 

  
Wg = mglsin! = (4.0kg)(9.8 m " s-2 )(3.0m)(sin(30o ) = 58.8 J  

 
The work done by the normal force is zero because the normal force is perpendicular the 
displacement   
 

    WN =
!
FN ! "

!r = mgcos# ĵ ! l î = 0 . 
 
The scalar sum of the work done by the three forces is then 
 

  
W =Wg +Wf = mgl(sin! " µk cos!)  

 

  W = mgl(sin! " µk cos!) = (4.0kg)(9.8m # s-2 )(3.0m)(sin(30o ) " (0.2)(cos(30o )) = 38.4 J  
 
12.4 Work done by a Non-Constant Force Along an Arbitrary Path 
 
Now suppose that a non-constant force F

!
 acts on a point-like body of mass  m  while the 

body is moving on a three dimensional curved path. The position vector of the body at 
time  t  with respect to a choice of origin is ( )tr! . In Figure 12.4 we show the orbit of the 
body for a time interval [t0 ,t f ]  moving from an initial position 0 0( )t t! =r r! !  at time 0t t=  

to a final position ( )f ft t! =r r! !  at time  
t = t f .  

 

 
 

Figure 12.4 Path traced by the motion of a body. 
 
 We divide the time interval [t0 ,t f ]  into  N  smaller intervals with 1[ , ]j jt t! , 

1j N= ! ! !  with  
tN = t f . Consider two position vectors ( )j jt t! =r r! !  and ( )j 1 j 1t t! !" =r r! !  

the displacement vector during the corresponding time interval as j j j 1!" = !r r r! ! ! . 
  
 Let F

!
 denote the force acting on the body during the interval 1[ , ]j jt t! . The 

average force in this interval is 
    
(
!
Fj )ave  and the average work jW!  done by the force 



during the time interval 1[ , ]j jt t!  is the dot product between the average force vector and 
the displacement vector,  
 
 

    
!Wj = (

!
Fj )ave " !

!rj . (12.4.1) 
 
The force and the displacement vectors for the time interval 1[ , ]j jt t!  are shown in Figure 
12.5 (note that the figure uses “ i ” as index instead of  “ j ” and the subscript “ave” on 

    
(
!
Fj )ave  has been suppressed). 

 
 

Figure 12.5 An infinitesimal work element. 
 
 We calculate the work by adding these scalar contributions to the work for each 
interval 1[ , ]j jt t! , for 1j =  to N , 
 

 
    
WN = !Wj

j=1

j=N

" = (
!
Fj )ave # !

!rj
j=1

j=N

" . (12.4.2) 

 
 We would like to define work in a manner that is independent of the way we 
divide the interval, so we take the limit as N !"  and 0j! "r!   for all j . In this limit, 
as the intervals become smaller and smaller, the distinction between the average force 
and the actual force vanishes. Thus if this limit exists and is well defined, then the work 
done by the force is  
 

 

    

W = lim
N!"
#
!rj !0

(
!
Fj )ave $ #

!rj
j=1

j=N

% =
!
F $ d!r

r0

rf

& . (12.4.3) 

 
Notice that this summation involves adding scalar quantities. This limit is called the line 
integral of the force F

!
. The symbol dr!  is called the infinitesimal vector line element. At 

time  t , dr!  is tangent to the orbit of the body and is the limit of the displacement vector 
( ) ( )t t t! = + ! "r r r! ! !  as  !t  approaches zero.  In this limit, the parameter  t  does not 

appear in the expression in Equation (12.4.3). 
 



 In general this line integral depends on the particular path the body takes between 
the initial position 0r

!  and the final position fr
! , which matters when the force F

!
 is non-

constant in space, and when the contribution to the work can vary over different paths in 
space.  An example is given in the Problems at the end of this Review Module. 
 
 We can represent the integral in Equation (12.4.3) explicitly in a coordinate 
system by specifying the infinitesimal vector line element dr!  and then explicitly 
computing the dot product.  
 
Work Integral in Cartesian Coordinates: 
 
In Cartesian coordinates the line element is 
 
 ˆ ˆ ˆd dx dy dz= + +r i j k! , (12.4.4) 
 
where  dx ,  dy , and  dz  represent arbitrary displacements in the   ̂i -,   ĵ -, and   ̂k -directions 
respectively as seen in Figure 12.6a. 
 

 
 

Figure 12.6a A line element in Cartesian coordinates. 
 
The force vector can be represented in vector notation by 
 
 x y z

ˆ ˆ ˆF F F= + +F i j k
!

. (12.4.5) 
 
So the infinitesimal work is the sum of the work done by the component of the force 
times the component of the displacement in each direction 
 
 dW = Fxdx + Fydy + Fzdz . (12.4.6) 
 
Eq. (12.4.6) is just the dot product 
 

 
    

dW =
!
F ! d!r = (Fx î + Fy ĵ+ Fz k̂) ! (dx î + dy ĵ+ dz k̂)

= Fxdx + Fydy + Fzdz
, (12.4.7) 

 
The total work is 
 



 
    
W =

!
F ! d!r

!r= !r0

!r= !r f

" = (Fxdx + Fydy + Fzdz)
!r= !r0

!r= !r f

" = Fxdx
!r= !r0

!r= !r f

" + Fydy
!r= !r0

!r= !r f

" + Fzdz
!r= !r0

!r= !r f

"  (12.4.8) 

 
Work Integral in Cylindrical Coordinates: 
 
In cylindrical coordinates the line element is 
 
     d

!r = dr r̂ + rd! !̂ + dz k̂ , (12.4.9) 
 
where  dr ,  rd! , and  dz  represent arbitrary displacements in the   ̂r -,  ̂! -, and   ̂k -
directions respectively as seen in Figure 12.6b. 
 

 
 

Figure 12.6b displacement vector d s!  between two points 
 

The force vector can be represented in vector notation by 
 
    

!
F = Fr r̂ + F

!
!̂ + Fz k̂ . (12.4.10) 

 
So the infinitesimal work is the dot product 
 

 
    

dW =
!
F ! d!r = (Fr r̂ + F

"
"̂ + Fz k̂) ! (dr r̂ + rd" "̂ + dz k̂)

= Frdr + F
"
rd" + Fzdz

, (12.4.11) 

 
The total work is 
 

 
    
W =

!
F ! d!r

!r= !r0

!r= !r f

" = (Frdr + F
#
rd# + Fzdz)

!r= !r0

!r= !r f

" = Frdr
!r= !r0

!r= !r f

" + F
#
rd#

!r= !r0

!r= !r f

" + Fzdz
!r= !r0

!r= !r f

" (12.4.12) 

 
 
 
 
 



12.5 Worked Examples  
 
Example 12.5.1: Work Done in a Constant Gravitation Field 
 
The work done in a uniform gravitation field is a fairly straightforward calculation when 
the body moves in the direction of the field. Suppose the body is moving under the 
influence of gravity,    

!
F = !mg ĵ  along a parabolic curve  

 
The body begins at the point   (x0 , y0 )  and ends at the point   

(x f , y f ) . What is the work 
done by the gravitation force on the body? 
 
Answer:  The infinitesimal line element dr!  is therefore  
 
    d

!r = dx î + dy ĵ . (12.5.1) 
 
So the dot product that appears in the line integral can now be calculated, 
 
     

!
F ! d !r = "mg ĵ ![dx î + dy ĵ] = "mgdy . (12.5.2) 

 
This result is not surprising since the force is only in the  y -direction. Therefore the only 
non-zero contribution to the work integral is in the  y -direction, with the result that  
 

 
0 0 0

r

0
r

( )
f f fy y y y

y f
y y y y

W d F dy mgdy mg y y
= =

= =

= ! = = " = " "# # #F r
! !  (12.5.3) 

 
In this case of a constant force, the work integral is independent of path. 
 
12.5.2 Example: Hooke’s Law Spring-Body System 
 
Consider a spring-body system lying on a frictionless horizontal surface with one end of 
the spring fixed to a wall and the other end attached to a body of mass m  (Figure 12.7). 
Calculate the work done by the spring force on body as the body moves from some initial 
position to some final position.  

 
 

Figure 12.7 A spring-body system. 
 



Solution: Choose the origin at the position of the center of the body when the spring is 
relaxed (the equilibrium position). Let x  be the displacement of the body from the origin. 
We choose the ˆ+i  unit vector to point in the direction the body moves when the spring is 
being stretched (to the right of 0x =  in the figure). The spring force on a mass is then 
given by 
 
 x

ˆ ˆF kx= = !F i i
!

. (12.5.4) 
 
 The work done by the spring force on the mass is 
 

 
  
Wspring = (!kx) dx = !

1
2x= x0

x= x f

" k(x f
2 ! x0

2 ) . (12.5.5) 

 
Example 12.5.3: Work done by the Inverse Square Gravitation Force 
 
Consider a body of mass  m  in moving in a fixed orbital plane about the sun. The mass of 
the sun is  ms . How much work does the gravitation interaction between the sun and the 
body do on the body during this motion? 
 
Solution: Let’s assume that the sun is fixed (it is not fixed but also moves in a very small 
ellipse in the same orbital plane). and choose a polar coordinate system with the origin at 
the center of the sun. Initially the body is at a distance  r0  from the center of the sun. In 
the final configuration the body has moved to a distance f 0r r<  from the center of the 

sun. The infinitesimal displacement of the body is given by     d
!r = dr r̂ + rd! !̂ . The 

gravitation force between the sun and the body is given by 
 

 s
grav grav 2

Gm mˆ ˆF
r

= = !F r r
!

. (12.5.6) 

 
The infinitesimal work done work done by this gravitation force on the body is given by  

    
dW =

!
Fgrav ! d

!r = (Fgrav ,r r̂) ! (dr r̂ + rd" "̂) = Fgrav ,rdr . Therefore the work done on the 

object ahs the object moves from   r0  to  
rf  is given by the integral 

 

 
    
W =

!
Fgrav ! d

!r =
r0

rf

" Fgrav ,rdr =
r0

rf

" #
Gmsunm

r 2

$

%&
'

()
dr

r0

rf

" . (12.5.7) 

 
Upon evaluation of this integral, we have for the work 
 

 
00

sun sun
sun2

0

1 1f fr r

r fr

Gm m Gm mW dr Gm m
r r r r

! "! "= # = = #$ %$ % $ %& ' & '
(  (12.5.8) 



 
Since the body has moved closer to the sun,  

rf < r0 , hence 1 / rf > 1 / r0 . Thus the work 
done by gravitation force between the sun and the body on the body is positive, 
 

 sun
0

1 1 0
f

W Gm m
r r
! "

= # >$ %$ %
& '

 (12.5.9) 

 
 We expect this result because the gravitation force points along the inward radial 
direction, so the dot product and hence work of the force and the displacement is positive 
when the body moves closer to the sun.  Also we expect that the sign of the work is the 
same for a body moving closer to the sun as a body falling towards the earth in a constant 
gravitation field, as seen in Example 4.7.1 above.  
 
Example 12.5.4: Work Done by the Inverse Square Electrical Force 
 
 Let’s consider two point-like bodies, body 1 and body 2, with charges  q1  and  q2  
respectively interacting via the electric force alone. Body 1 is fixed in place while body 2 
is free to move in an orbital plane. How much work does the electric force do on the body 
2 during this motion? If the charges of the bodies are of the same sign they will repel and 
rf > r0 . If the charges of the bodies are of opposite signs, the bodies will attract and 
rf < r0 . 
 
Solution: The calculation in nearly identical to the calculation of work done by the 
gravitational inverse square force in Example 4.7.3. The most significant difference is 
that the electric force can be either attractive or repulsive while the gravitation force is 
always attractive. Once again we choose polar coordinates centered on body 2 in the 
plane of the orbit. Initially a distance  r0  separates the bodies and in the final state a 
distance  

rf  separates the bodies. The electric force between the bodies is given by 
 

 
    

!
Felec = Felec r̂ = Felec,r r̂ = 1

4!"0

q1q2

r 2 r̂ . (12.5.10) 

 
The work done by this electric force on the body 2 is given by the integral 
 

 
    
W =

!
Felec ! d

!r =
r0

rf

" Felec,rdr =
r0

rf

"
1

4#$0

q1q2

r2 dr
r0

rf

"  (12.5.11) 

 
Evaluating this integral, we have for the work done by the electric force 
 



 

  

W =
1

4!"0

q1q2

r 2 dr
r0

rf
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4!"0
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r 2
r0

rf

= $
1

4!"0
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1
rf
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* . (12.5.12) 

 
If the bodies have the opposite signs, q1q2 < 0 , we expect that the body 2 will move 
closer to body 1 so rf < r0 , and 1 / rf > 1 / r0 . From our result for the work, the work done 
by electrical force in moving body 2 is positive, 
 

 W = !
1
4"#0

q1q2 (
1
rf
!
1
r0
) > 0 . (12.5.13) 

 
Once again we see that bodies under the influence of electric forces only will naturally 
move in the directions in which the force does positive work.  
 
 If the bodies have the same sign, then q1q2 > 0 . They will repel with rf > r0  and 
1 / rf < 1 / r0 . Thus the work is once again positive: 
 

 W = !
1
4"#0

q1q2
1
rf
!
1
r0

$

%
&

'

(
) > 0 . (12.5.14) 

 
 
12.6 Work-Kinetic Energy Theorem in Three Dimensions 
 
Recall our mathematical result that for one-dimensional motion 
 

 
  
m axdx

initial

final

! = m
dvx

dt
dx

initial

final

! = m dvx

dx
dtinitial

final

! = m (dvx )vx
initial

final

! =
1
2

mvxf
2 "

1
2

mvxi
2 . (12.6.1) 

 
When we introduce Newton’s Second Law in the form   Fx

total = max , then  
 

 
  

Fx
total dx

initial

final

! =
1
2

mvxf
2 "

1
2

mvxi
2  (12.6.2) 

 
Eq. (12.6.2) generalizes to the  y !  and  z ! directions: 
 

 
  

Fy
total dy

initial

final

! =
1
2

mvyf
2 "

1
2

mvyi
2  (12.6.3) 

 
  

Fz
total dz

initial

final

! =
1
2

mvzf
2 "

1
2

mvzi
2  (12.6.4) 



 
Adding Eqs. (12.6.2), (12.6.3), (12.6.4) and  yield 
 

 
  

(Fx
total dx + Fy

total dy + Fz
total dz)

initial

final

! =
1
2

m(vxf
2 + vyf

2 + vzf
2 ) "

1
2

m(vxi
2 + vyi

2 + vzi
2 ) (12.6.5) 

 
Recall (Eq. (12.4.8)) that the left hand side of Eq. (12.6.5) is the work done by the total 
force  

!
F total  on the object  

 

 
  
W total = dW total

initial

final

! = (Fx
total dx + Fy

total dy + Fz
total dz)

initial

final

!  (12.6.6) 

 
The right hand side of Eq. (12.6.5) is the change in kinetic energy of the object  
 

 
  
!K " K f # Ki =

1
2

mv f
2 #

1
2

mv0
2 =

1
2

m(vxf
2 + vyf

2 + vzf
2 ) #

1
2

m(vxi
2 + vyi

2 + vzi
2 ) (12.6.7) 

 
Therefore Eq. (12.6.5) is the three dimensional generalization of the work-kinetic energy 
theorem 
  

 
    
W total =

!
F total ! d!r

!r0

!r f

" = K f # Ki .  (12.6.8) 

 
When the total work done on an object is positive, the object will increase its speed, and 
negative work done on a object causes a decrease in speed. When the total work done is 
zero, the object will maintain a constant speed.  
 
12.7 Instantaneous Power Applied by a Non-Constant Force for Three 
Dimensional Motion  
 
Recall that for one-dimensional motion, the instantaneous power at time t  is defined to 
be the limit of the average power as the time interval [t,t + !t]  approaches zero,  

 
   

P = Fapplied,x vx . (12.7.1) 
 
A more general result for the instantaneous power is found by using the expression for 
dW  as given in Equation (12.4.7), 
 

 dW dP
dt dt

!
= = = !

F r F v
! ! ! ! . (12.7.2) 

 
Time Rate of Change of Kinetic Energy and Power 



 
 
The time rate of change of the kinetic energy for a body of mass m  
 

 
 

dK
dt

=
1
2
m d
dt
!v ! !v( ) , (12.7.3) 

 
Using Eq. (12.1.9) the time rate of change of the kinetic energy for a body of mass m  
 

 
 

dK
dt

=
1
2
m d
dt
!v ! !v( ) = m d

dt
!v"

#$
%
&'
!
!v = m !a ! !v =

!
F ! !v = P , (12.7.4) 

 
consistent with Equation (12.7.2). 
 
Appendix 12.A: Work Done on a System of Two Particles 
 
We shall show that the work done by an internal force in changing a system of two 
particles of masses 1m  and 2m  respectively from an initial state A  to a final state B  is 
equal to  
 

 
  
Wc =

1
2
µ(vB

2 ! vA
2 )  (12.A.1) 

 
where 2

Bv  is the square of the relative velocity in stateB , 2
Av  is the square of the relative 

velocity in state A , and   µ = m1m2 / (m1 + m2 )  is a quantity known as the reduced mass of 
the system. 
 
 
Proof:  
 
 
Newton’s Second Law applied to body 1 is given expressed as  
 

 
2
1

1,2 1 2

dm
dt

=
rF
!!

 (12.A.2) 

 
and to body 2 as 
 

 
2
2

2,1 2 2

dm
dt

=
rF
!!

. (12.A.3) 

 
Divide each side of Equation (12.A.2) by 1m , 
 



 
2

1,2 1
2

1

d
m dt

=
F r
! !

 (12.A.4) 

 
and divide each side of Equation (12.A.3) by 2m , 
 
  

 
2

2,1 2
2

2

d
m dt

=
F r
! !

. (12.A.5) 

 
Subtract Equation (12.A.5) from Equation (12.A.4) yielding 
 

 
22 2

1,2 2,1 1,21 2
2 2 2

1 2

dd d
m m dt dt dt

! = ! =
F F rr r
! ! !! !

 (12.A.6) 

 
where as in Section 8.4 of the text, 1 2 1 2, = !r r r! ! ! . 
 
Use Newton’s Third Law, 1,2 2,1= !F F

! !
 on the left hand side of Equation (12.A.6) to obtain 

 
  

 
22 2
1,21 2

1,2 2 2 2
1 2

1 1 dd d
m m dt dt dt
! "

+ = # =$ %
& '

rr rF
!! !!

. (12.A.7) 

 
The quantity 2 2

1,2 /d dtr!  is the relative acceleration of body 1 with respect to body 2. 
 
Define  

 
1 2

1 1 1
m mµ

! + ; (12.A.8) 

 
as stated above, the quantity µ  is known as the reduced mass of the system. Equation 
(12.A.7) now takes the form 
 

 
2
1,2

1,2 2

d
dt

µ=
r

F
!!

. (12.A.9) 

 
The total work done in the system in displacing the two masses from an initial state A  to 
a final state B  is given by 
 

 1,2 1 2,1 2

B B

A A

W d d= ! + !" "F r F r
! !! ! , (12.A.10) 

 



as shown in Equation (8.4.3) of the text.  Recall that in this usage, the labels A  and B  
denote states of the system, not paths.  Except for trivial cases, the two bodies will not 
follow the same path. 
 
From Newton’s Third Law, the sum in Equation (12.A.10) becomes 
 

 ( )1,2 1 1,2 2 1,2 1 2 1,2 1,2

B B B B

A A A A

W d d d d d= ! " ! = ! " = !# # # #F r F r F r r F r
! ! ! !! ! ! ! !  (12.A.11) 

 
where 1 2,d r!  is the relative displacement of the two bodies. We can now substitute 
Newton’s Second Law, Equation (12.A.9) for the relative acceleration into Equation 
(12.A.11), 
 

 
2 2
1,2 1,2 1,2

1,2 1,2 1,22 2

B B B

A A A

d d d
W d d dt

dt dt dt
µ µ

! "
= # = # = #$ %$ %

& '
( ( (

r r r
F r r

! ! !! ! ! , (12.A.12) 

 

where we have used the relation between the differential elements 1,2
1,2

d
d dt

dt
=
r

r
!

!   . 

 
The product rule for derivatives of the dot product of a vector with itself is given for this 
case by 
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1,2 1,2 1,2 1,2
2

1
2

d d d dd
dt dt dt dt dt
! "

# = #$ %
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 (12.A.13) 

 
 
Substitute Equation (12.A.13) into Equation (12.A.12), which then becomes 
 

 1,2 1,21
2

B

A

d ddW dt
dt dt dt

µ
! "

= #$ %
& '

(
r r! !

. (12.A.14) 

 
Equation (12.A.14) is now the integral of an exact derivative, yielding 
 

 
    
W =

1
2
µ

d!r1, 2

dt
!
d!r1, 2

dt

"

#
$

%

&
'

A

B

=
1
2
µ (!v1, 2 !

!v1, 2 )
A

B
=

1
2
µ(vB

2 ( vA
2 ) , (12.A.15) 

 
where 1,2v

!  is the relative velocity between the two bodies. 
 
It’s important to note that if in the above derivation we had used 
 



 
( )

2,1 1,2

2,1 2 1 1,2

2,1 2 1 1,2

1,2 2,1

d d d

= !

= ! = !

= ! = !

= !

F F
r r r r

r r r r
v v

! !

! ! ! !

! ! ! !

! !

 (12.A.16) 

 
at any point we would have obtained the same result. 
 
 
Equation (12.A.15) implies that the work done is the change in the kinetic energy of the 
system, 
 

 
  
!K =

1
2
µ(vB

2 " vA
2 ) . (12.A.17) 
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