
Chapter 13 Conservation of Energy and Potential Energy 

So far we have analyzed the motion of point-like bodies under the action of forces using 
Newton’s Laws of Motion. We shall now introduce the Principle of Conservation of 
Energy to study the changes in energy of a system between an initial state and final state. 
In particular we shall introduce the concept of potential energy to describe the effect of 
conservative internal forces acting on the constituent components of a system. 

13.1 Conservation of Energy 

When a system and its surroundings undergo a transition from an initial state to a final 
state, the total change in energy is zero, 

!E total = !Esystem + !Esurroundings = 0 . (13.1.1) 

Figure 13.1 A diagram of a system and its surroundings 

This conservation law is our basic assumption. In any physical application, we first 
identify our system and surroundings, and then attempt to quantify changes in energy. In 
order to do this, we need to identify every type of change of energy in every possible 
physical process. 

If we add up all known changes in energy in the system and surroundings and do 
not arrive at a zero sum, we have an open scientific problem. By searching for the 
missing changes in energy, we may uncover some new physical phenomenon. Recently, 
one of the most exciting open problems in cosmology is the apparent acceleration of the 
expansion of the universe, which has been attributed to dark energy that resides in space 
itself, an energy type without a clearly known source.1 

Energy can change forms inside a system, for example chemical energy stored in 
the molecular bonds of gasoline can be converted into kinetic energy and heat via 
combustion. Energy can also flow into or out of the system across a boundary. A system 
in which no energy flows across the boundary is called a closed system. Then the total 
change in energy of the system is zero, 

closed !Esystem = 0 . (13.1.2) 

1 http://www-supernova.lbl.gov/~evlinder/sci.html . 
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13.2 Conservative and Non-Conservative Forces 

Our first type of “energy accounting” involves mechanical energy. There are two types of 
mechanical energy, kinetic energy and potential energy. Our first task is to define what 
we mean by the change of the potential energy of a system. 

! 
We defined the work done by a force F , on an object which moves along a path 

from an initial point r! 0 to a final point r! f , as the integral of the component of the force 
tangent to the path with respect to the displacement of the point of contact of the force 
and the object, 

W = " F 
! 
! dr ! . (13.2.1) 

path 

Does the work done on the object by the force depend on the path taken by the 
object? First consider the motion of an object under the influence of a gravitational force 
near the surface of the earth, as was considered in Sections 7.4 and 7.7. The gravitational 
force always points downward, so the work done by gravity only depends on the change 
in the vertical position (we choose the positive y -direction upwards), 

! y f 

grav # dr ! = # Fgrav , y dy = #
y f 
"mg dy = " ( f " y0 ) (13.2.2) W = F ! mg y 

y0
path y0 

Therefore when an object falls, (y f ! y0 ) < 0 , and the work done by gravity is 
positive. When an object rises, (y f ! y0 ) > 0 , and the work done by gravity is negative. 
Suppose an object first rises and then falls, returning to the original starting height. The 
positive work done on the falling portion exactly cancels the negative work done on the 
rising portion, as in Figure 13.2. The total work done is zero. Thus the gravitational work 
done between two points will not depend on the path taken, but only on the initial and 
final positions.  
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Figure 13.2 Gravitational work sums to zero in a closed loop. 

This is also true for projectile motion. The displacement of the projectile has both a 
horizontal component and a vertical component. However the gravitational force is only 
in the vertical direction, so the horizontal motion does not contribute to the work done. 

Now consider the motion of an object on a surface with a kinetic frictional force 
between the object and the surface and denote the coefficient of kinetic friction by µk . 
Let’s compare two paths from an initial point x0 to a final point x f . The first path is a 
straight-line path. Along this path the work done is just 

W = F 
! 
! dr ! = F dx = "µ N s = "µ N #x < 0 (13.2.3) friction $ $ x k 1 k 

path 1 path 1 

where the length of the path is equal to the displacement, s1 = !x . Note that the fact that 
the kinetic friction force is directed opposite to the displacement is reflected in the minus 
sign in Equation (13.2.3). The second path goes past x f some distance and them comes 
back to x f (Figure 13.3). Since the force of friction always opposes the motion, the work 
done by friction is negative, 

W = F 
! 
! dr ! = F dx = "µ N s < 0 . (13.2.4) friction # # x k 2 

path 2 path 2 

The total work depends on the total distance traveled s2 , and is greater than the 
displacement s2 > !x . The magnitude of the work done along the second path is greater 
than the magnitude of the work done along the first path. 

12/28/2010 3




Figure 13.3 Two different paths from x0 to x f . 

These two examples typify two fundamentally different types of forces and their 
contribution to work. The gravitation force near the surface of the earth does the same 
amount of work regardless of the path taken between the initial and final points. In the 
case of sliding friction, the work done depends on the path taken. 

Definition: Conservative Force 

Whenever the work done by a force in moving an object from an initial point to a 
final point is independent of the path, the force is called a conservative force. 

! 
The work done by a conservative force Fc in going around a closed path is zero. Consider 
the two paths shown in Figure 13.4 that form a closed path starting and ending at the 
point A with Cartesian coordinates (1,0) . The work done along path 1 (the upper path in 
the figure, blue if viewed in color) from point A to point B with coordinates (0,1) is 
given by 

B ! !Wpath 1 = "Fc (1) ! dr1 . (13.2.5) 
A 

The work done along path 2 (the lower path, green in color) from B to A is given by 

A ! !Wpath 2 = "Fc (2) ! dr2 . (13.2.6) 
B 

12/28/2010 4




Figure 13.4 Two paths in the presence of a conservative force. 

The work done around the closed path is just the sum of the work along paths 1 and 2, 

B ! A !! !
1 2 r . (13.2.7) Wclosed path = Wpath 1 +Wpath 2 = "Fc ( ) ! dr1 + "Fc ( ) ! d 2 

A B 

If we reverse the endpoints of path 2, then the integral changes sign, 

A ! ! B ! !Wpath 2 = #Fc (2) ! dr2 = "#Fc (2) ! dr2 . (13.2.8) 
B A 

We can then substitute Equation (13.2.8) into Equation (13.2.7) to find that the work 
done around the closed path is 

B ! B !! !Wclosed path = #Fc (1) ! dr1 " #Fc (2) ! dr2 . (13.2.9) 
A A 

Since the force is conservative, the work done between the points A to B is independent 
of the path, so 

B ! B !! ! 
"Fc (1) ! dr1 = "Fc (2) ! dr2 . (13.2.10) 
A A 
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We now use path independence of work for a conservative force (Equation (13.2.10) in 
Equation (13.2.9)) to conclude that the work done by a conservative force around a 
closed path is zero, 

! 
W
 = "
" ! d! rF = 0 . (13.2.11)
closed path c 

closed 
path 

13.3 Changes in Potential Energies of a System 

Consider an isolated body near the surface of the earth as a system that is initially given a 
velocity directed upwards. Once the body is released, the gravitation force, acting as an 
external force, does a negative amount of work on the body, and the kinetic energy 
decreases until the body reaches its highest point, at which its kinetic energy is zero. The 
gravitation then force does positive work until the body returns to its initial starting point 
with a velocity directed downward. If we ignore any effects of air resistance, the 
descending body will then have the identical kinetic energy as when it was thrown. All 
the kinetic energy was completely recovered. 

Now consider both the earth and the body as a system and assume that there are 
no other external forces acting on the system. Then the gravitation force is an internal 
conservative force, and does work on both the body and the earth during the motion. As 
the body moves upward, the kinetic energy of the system decreases, primarily because 
the body slows down, but there is also an imperceptible increase in the kinetic energy of 
the earth. The change in kinetic energy of the earth must also be included because the 
earth is part of the system. When the body returns to its original height (vertical distance 
from the surface of the earth), all the kinetic energy in the system is recovered, even 
though a very small amount has been transferred to the Earth. If we included the air as 
part of the system, and the air resistance as a non-conservative internal force, then the 
kinetic energy lost due to the work done by the air resistance is not recoverable. This lost 
kinetic energy, which we have called thermal energy, is distributed as random kinetic 
energy in both the air molecules and the molecules that compose the body (and, to a 
smaller extent, the earth). 

We shall define a new quantity, the change in the internal potential energy of the 
system, which measures the amount of lost kinetic energy that can be recovered during an 
interaction. When only internal conservative forces act on the system, the sum of the 
changes of the kinetic and potential energies of the system is zero. 

Consider a system consisting of two bodies with masses m1 and m2 respectively. 
Assume that there is one conservative force (internal force) that is the source of the 
interaction between two bodies. We denote the force on body 1 due to the interaction ! ! 
with body 2 by F1, 2 and the force on body 2 due to the interaction with body 1 by F2,1 . 
From Newton’s Third Law, 

! ! 
F1,2 = !F2,1 . (13.3.1) 
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The forces acting on the bodies are shown in Figure 13.5. 

Figure 13.5 Internal forces acting on two bodies 

Choose a coordinate system (Figure 13.6) in which the position vector of body 1 
is given by r! 1 and the position vector of body 2 is given by r! 2 . The relative position of 
body 1 with respect to body 2 is given by r ! 1 2 , = r ! 1 ! r ! 2 . During the course of the 
interaction, body 1 is displaced by d r ! 1 and body 2 is displaced by d r ! 1 , so the relative 
displacement of the two bodies during the interaction is given by d r ! 1 2 , = d r ! 1 ! d r ! 2 . 

Figure 13.6 Coordinate system for two bodies with relative position vector r ! = r ! 1 ! r ! 2 

In Module 12 we observed that the change in the total kinetic energy of a body is equal to 
the work done by the forces in displacing the body. For two bodies displaced from an 
initial state A to a final state B , 

B ! ! B ! ! 
!Ksystem = !K1 + !K2 = Wc = #F1,2 " d r1 + #F2,1 " d r2 . (13.3.2) 

A A 

(In Equation (13.3.2), the labels “ A ” and “ B ” refer to initial and final states, not paths.) 

From Newton’s Third Law, Equation (13.3.1), the sum in Equation (13.3.2) becomes 
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B B B B! ! ! ! ! ! ! ! ! 
!Ksystem = Wc = $F1, 2 " dr1 # $F1, 2 " dr2 = $F1,2 " (d r1 # d r2 ) = $F1,2 " d r1,2 (13.3.3) 

A A A A 

where d r ! 1 2 , = dr ! 1 ! dr ! 2 is the relative displacement of the two bodies.  Note that since 
! ! ! ! B ! ! B ! !F1,2 = !F2,1 and d r , = !dr2 1 , "F1,2 ! d r1,2 = "F2,1 ! d r2,1 .1 2 , 

A A 

Definition: Change in Potential Energy for Two Bodies 

Consider a system consisting of two bodies interacting through a ! 
conservative force. Let F1,2 denote the force on body 1 due to the 
interaction with body 2 and let d r ! 1 2 , = d r ! 1 ! d r ! 2 be the relative 
displacement of the two bodies. The change in internal potential energy of 
the system is defined to be the negative of the work done by the 
conservative force when the bodies undergo a relative displacement from 
the initial state A to the final state B along any displacement that changes 
the initial state A to the final state B , 

B B !r
!
F!r

!
F1, 2 1, 2 2,1 2,1 

A A 

Our definition of potential energy only holds for conservative forces, because the 
work done by a conservative force does not depend on the path but only on the initial and 
final positions. Since the work done by the conservative force is equal to the change in 
kinetic energy, we have that 

!Usystem = "! Ksystem . (13.3.5) 

Recall that the work done by a conservative force in going around a closed path is 
zero (Equation (13.2.11)); therefore the change in kinetic energy when a system returns 
to its initial state is zero. This means that the kinetic energy is completely recoverable. 

In the Appendix 12.A: Work Done on a System of Two Particles we showed that 
the work done by an internal force in changing a system of two particles of masses m1 
and m2 respectively from an initial state A to a final state B is equal to 

1W = µ (vB 
2 ! vA 

2 ) (13.3.6) c 2 

!U = "W
 # d # d (13.3.4)
= "
$
 = "
$
 .
system c 
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where vB 
2 is the square of the relative velocity in state B , vA 

2 is the square of the relative 
velocity in state A , and µ = m1m2 / (m1 + m2 ) is a quantity known as the reduced mass of 
the system. 

Change in Potential Energy for Several Conservative Forces 

When there are several internal conservative forces acting on the closed system we define 
a separate change in potential energy for the work done by each conservative force, 

B ! ! 
!Usystem, i = "Wi = "$Fc, i # dri . (13.3.7) 

A 

! 
where Fc, i is a conservative internal force and dr ! i a change in the relative positions of the 

! 
bodies on which Fc, i when the system is changed from state A to state B . 

The total work done is the sum of the work done by the individual conservative forces, 

Wc
total = Wc,1 +Wc,2 + ! ! ! . (13.3.8) 

Hence, the sum of the changes in potential energies for the system is the sum 

total !Usystem = !Usystem,1 + !Usystem,2 + " " " . (13.3.9) 

Therefore the total change in potential energy of the system is equal to the negative of the 
total work done 

B ! !total total !Usystem = "Wc = "$%Fc, i # dr . (13.3.10) 
i A i 

Once again, if the external forces do no work, 

total !Ksystem = "! Usystem . (13.3.11) 

13.4 Examples: Change in Potential Energy 

In Module 12, we calculated the work done by different conservative forces: constant 
gravity near the surface of the earth, the spring force, and the universal gravitational 
force. We chose the system in each case so that the conservative force was an external 
force. In each case, there was no change of potential energy and the work done was equal 
to the change of kinetic energy, 
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total Wext = !Ksystem . (13.4.1) 

We now treat each of these conservative forces as internal forces and calculate the change 
in potential energy according to our definition 

B ! ! 
!Usystem = "Wc = "$F # dr . (13.4.2) c 

A 

We shall also choose a zero reference potential for the potential energy of the system, so 
that we can consider all changes in potential energy relative to this reference potential. 

13.4.1 Example: Change in Gravitational Potential Energy Near the Surface of the 
Earth 

Let’s consider the example of a body falling near the surface of the earth. Choose our 
system to consist of the earth and the body. The gravitational force is now an internal 
conservative force acting inside the system. The initial and final state are specified by the 
distance separating the body and the center of mass of the earth, and the velocities of the 
earth and the body. 

Let’s choose a coordinate system with the origin on the surface of the earth and the + y -
direction pointing away from the center of the earth. Since the displacement of the earth 
is negligible, we need only consider the displacement of the body in order to calculate the 
change in potential energy of the system. 

Suppose the body starts at an initial height y0 above the surface of the earth and ends at 
final height y f . The gravitation force on the body is given by 

F 
! 
gravity = mg ! = Fgravity, y ĵ = !mg ĵ . (13.4.3) 

The work done by the gravitational force on the body is then 

Wgravity = Fgravity, y !y = "mg !y , (13.4.4) 

which is of course the same result as found in Equation (7.4.16). 

The change in potential energy is then given by 

!Usystem = "Wgravity = mg !y = mg y f " mg y 0 . (13.4.5) 

Choice of Zero Point Reference for Potential Energy 

We introduce a potential energy function U so that 
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!Usystem " U f # U0 . (13.4.6) 

Only differences in the function U have a physical meaning. We can choose a zero 
reference point for the potential energy anywhere we like, since change in potential 
energy only depends on the displacement, !y (in general, the change in configuration). 
We have some flexibility to adapt our choice of zero for the potential energy to best fit a 
particular problem. In the above expression for the change of potential energy, let 
y f ! y be an arbitrary point and y = 0 be the origin. In addition, we choose the zero 
reference potential for the potential energy to be at the surface of the earth corresponding 
to our origin, ( 0) = 0U y = . Then 

= ( ) "U y ( = 0) = ( ) " 0 = mg y " 0!U U y U y , (13.4.7) 

( ) = mg y , with U y ( = 0) U y = 0 . (13.4.8) 

13.4.2 Example: Hooke’s Law Spring-Body System 

Consider a spring-body system lying on a frictionless horizontal surface with one end of 
the spring fixed to a wall and the other end attached to a body of mass m (Figure 13.6). 
The spring force is an internal conservative force. The wall exerts an external force on the 
spring-body system but since the point of contact of the wall with the spring undergoes 
no displacement this external force does no work. 

Figure 13.6 A spring-body system. 

Choose the origin at the position of the center of the body when the spring is 
relaxed (the equilibrium position). Let x be the displacement of the body from the origin. 
We choose the +î unit vector to point in the direction the body moves when the spring is 
being stretched (to the right of x = 0 in the figure). The spring force on a mass is then 
given by 

F 
! 
= Fx î = !kx ̂i . (13.4.9) 

The work done by the spring force on the mass is 
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x = x f 1
Wspring = " (!kx) dx = ! 

2
k(x f 

2 ! x0
2 ) . (13.4.10) 

x = x0 

This is of course the result obtained in Module 12 

We then define the change in potential energy in the spring-body system in moving the 
body from an initial position x0 from equilibrium to a final position x f from 
equilibrium by 

1 
!Uspring " Uspring (x f ) # Uspring (x0 ) = #Wspring = 

2 
k(x f 

2 # x0
2 ) . (13.4.11) 

Therefore an arbitrary stretch or compression of a spring-body system from equilibrium 
x0 = 0 to a final position x f = x changes the potential energy by 

!U = Uspring (x f ) "Uspring (x0 ) = 
1 
k x 2 . (13.4.12) 
2 

For the spring-body system, there is an obvious choice of position where the potential 
energy is zero, the equilibrium position of the spring- body, 

Uspring (x = 0) ! 0 . (13.4.13) 

Then with this choice of zero reference potential, the potential energy function is given 
by 

Uspring ( ) = 
1
2 
k x 2, with Uspring (x = 0) ! 0 . (13.4.14) x 

13.4.3 Example: Inverse Square Gravitational Force 

Consider a system consisting of two bodies of masses m1 and m2 that are separated by a 
center-to-center distance r . The internal gravitational force between the two bodies is 
given by 

! Gm m ˆFgrav = ! 1
2 

2 r . (13.4.15) 
r 

The work done by this gravitational force in moving the two bodies from an initial 
position in which the center of mass of the two bodies are a distance r0 apart to a final 
position in which the center of mass of the two bodies are a distance rf apart is given by 
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r ! r
W = )r0 F # dr = )r0 %' 

$ 
r 2 &

( 

f ! f ! Gm m 1 2 " dr . (13.4.16) 

Evaluating this integral, we have 

r Gm m 1 1 " f ! Gm m 1 2 " dr = 1 2 
rf 

= Gm m $
! 

W = ( $# 2 % # % . (13.4.17) 1 2 $ r r %r0 & r ' r r0 & f 0 ' 

Therefore the change in potential energy of the system is 

! 1 1 " 
#Ugravity = $Wgravity = $Gm m 1 2 %% $ & (13.4.18) 

' rf r0 (& 

analogous to the result given in Equation (7.6.9). 

We now choose our reference point for the zero of the potential energy to be at infinity, 
r0 = ! , with the choice that Ugravity (r0 = !) " 0 . By making this choice, the term 1/ r in 
the expression for the change in potential energy vanishes when r0 = ! . The gravitational 
potential energy function for the two bodies when their center of mass to center of mass 
distance is rf = r becomes 

Gm m Ugravity ( ) = r ! 1 2 , with Ugravity (r0 = ") # 0 . (13.4.19) 
r 

There’s a subtle aspect to the above calculation. In Equation (13.4.15), our convention is 
that d r ! is the differential change in the relative separation of the bodies, but we don’t 
specify which body moves, or if they both do. From the final result, Equation (13.4.19), 
we might correctly infer that it doesn’t matter. Also, we have used the fact that 
r̂ ! d r ! = dr ; the component of d r ! in the radial r̂ -direction is the scalar change dr in the 
separation. Lastly, watch all the minus signs. In Equation (13.4.16), as r0 !" , it might 
appear that the improper integral should need one more minus sign, but in this case 
dr < 0 and the calculus does the sign accounting for us. 

13.5 Mechanical Energy 

Definition: Change in Mechanical Energy 

The total change in the mechanical energy of the system is defined to be 
the sum of the changes of the kinetic and the potential energies, 

!Emechanical = !Ksystem + !Usystem . (13.5.1) 
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From Equation (13.3.11), for a closed system (no external forces) with only conservative 
internal forces, the total change in the mechanical energy is zero, 

!Emechanical = !Ksystem + !Usystem = 0 . (13.5.2) 

Equation (13.5.2) is the symbolic statement of what is called the conservation of 
mechanical energy. Recall that the work done by a conservative force in going around a 
closed path is zero (Equation (13.2.11)), therefore the both the changes in kinetic energy 
and potential energy are zero when a system returns to its initial state. Throughout the 
process, the kinetic energy may change into internal potential energy but if the system 
returns to its initial state, the kinetic energy is completely recoverable. We shall refer to 
closed system in which processes take place in which only conservative forces act as 
completely reversible processes. 

13.5.1 Example: Change in Gravitational Potential Energy Near the Surface of the 
Earth 

Let’s consider the example of a body falling near the surface of the earth. Choose our 
system to consist of the earth and the body. The gravitational force is now an internal 
conservative force acting inside the system. The initial and final state are specified by the 
distance separating the body and the center of mass of the earth, and the velocities of the 
earth and the body. The change in kinetic energy between the initial and final states for 
the system is 

!Ksystem = !Kearth + !Kbody , (13.5.3) 

# 1 1 & # 1 1 & 
"!Ksystem = %$ 2 

m e (vearth, f )
2 " 

2 
m e (vearth,0 )

2 
('
+ %$ 2 

mb (vbody, f )
2 

2 
mb (vbody,0 )

2 
('

.(13.5.4) 

The change of kinetic energy of the earth due to the gravitational interaction between the 
earth and the body is negligible.2 The total change in kinetic energy of the system is 
approximately equal to the change in kinetic energy of the body, 

1 1 mb (vbody,0 )
2 . (13.5.5) !Ksystem " !Kbody = 

2 2
mb (vbody, f )

2 # 

We now define the mechanical energy function for the system 

1Emechanical = K + U = 
2 

mb (vbody )2 + mg y, with U ( y = 0) = 0 , (13.5.6) 

where K is the kinetic energy and U is the potential energy. The change in mechanical 
energy is then 

2 A brief outline of a proof of this statement is given in Appendix 13.A. 
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!Emechanical " Emechanical, f # Emechanical,0 = (K f + U f ) # (K0 + U0 ) . (13.5.7) 

When the work done by the external forces is zero and there are no internal non-
conservative forces, the total mechanical energy of the system is constant, 

Emechanical, f = Emechanical,0 , (13.5.8) 

or equivalently 

(K f + U f ) = (K0 + U0 ) . (13.5.9) 

The change of kinetic energy of the earth due to the gravitational interaction between the 
earth and the body is negligible. The total change in kinetic energy of the system is 
approximately equal to the change in kinetic energy of the body, 

1 1 
!Ksystem " !Kbody = 

2 
mb (vbody, f )

2 # 
2 

mb (vbody,0 )
2 . (13.5.10) 

13.6 Spring Force Energy Diagram 

The spring force on a body is a restoring force F 
! 
= Fx î = !k x ̂i where we choose a 

coordinate system with the equilibrium position at x0 = 0 and x is the amount the spring 
has been stretched (x > 0) or compressed (x < 0) from its equilibrium position. The 
negative of the work done by the spring force in moving the body from x0 to x defines 
the potential energy difference 

x x0 ) " 
x

x 
1 ( 2 ! x0

2 )U ( ) !U ( = ! F dx = k x . (13.6.1) 
x0 2 

The first fundamental theorem of calculus states that 

x dU 
U ( ) !U ( 0 = " x0 dx dx . (13.6.2) x x ) 

Comparing Equation (13.6.1) with Equation (13.6.2) shows that the force is the negative 
derivative (with respect to position) of the potential energy, 

dU ( ) . (13.6.3) F = ! 
x 

x dx 
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Choose the zero reference point for the potential energy to be at the equilibrium position, 
U (x0 = 0) ! 0 . Then the potential energy function becomes 

U ( ) x = 
1 
k x 2 . (13.6.4) 
2 

From this, we obtain the spring force law as 

dU ( ) x d ! 1 k x 2 "% = #k x . (13.6.5) F = # = #x dx dx &
$ 2 ' 

In Figure 13.7 we plot the potential energy function for the spring force as function of x 
withU (x0 = 0) ! 0 (the units are arbitrary). 

Figure 13.7 Graph of potential energy function for the spring. 

The minimum of the potential energy function occurs at the point where the first 
derivative vanishes 

xdU ( ) 
= 0 . (13.6.6) 

dx 

From Equation (13.6.4), the minimum occurs at x = 0 , 

dU ( ) 
= k x . (13.6.7) 0 = 

x 
dx 

Since the force is the negative derivative of the potential energy, and this derivative 
vanishes at the minimum, we have that the spring force is zero at the minimum x = 0 
agreeing with our force law, F = !k x = 0 .x x=0 x=0 
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Suppose the potential energy function has positive curvature in the neighborhood 
of the minimum. If the body is extended a small distance x > 0 away from equilibrium, 
the slope of the potential energy function is positive, dU ( ) x dx > 0 ; hence the component 
of the force is negative since Fx = ! dU ( ) x dx < 0 . Thus the body experiences a restoring 
force towards the minimum point of the potential. If the body is compresses with x < 0 
then dU ( ) x dx < 0 ; the component of the force is positive, Fx = ! dU ( ) x dx > 0 , and the 
body again experiences a force back towards the minimum of the potential energy as in 
Figure 13.8. 

Figure 13.8 Stability diagram for the spring force. 

Suppose our spring-body system has no loss of mechanical energy due to 
dissipative forces such as friction or air resistance. The total mechanical energy at any 
time will then be the sum of the kinetic energy ( ) and the potential energy xK x U ( )

= K x ( ) +U ( ) .E x (13.6.8) 

Both the kinetic energy and the potential energy are functions of the position of the body 
with respect to equilibrium. The energy is a constant of the motion and with our choice of 
U (x0 = 0) ! 0 , the energy can be either a positive value or zero. When the energy is zero, 
the body is at rest at the equilibrium position. 

In Figure 13.8, we draw a straight horizontal line corresponding to a non-zero 
positive value for the energy on the graph of potential energy as a function of x . The 
energy intersects the potential energy function at two points {!xmax , xmax } with xmax > 0 . 
These points correspond to the maximum compression and maximum extension of the 
spring, which are called the turning points. 
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The kinetic energy is the difference between the energy and the potential energy, 

( ) = E !U ( ) K x x . (13.6.9) 

At the turning points, where E = U ( ) x , the kinetic energy is zero. Regions where the 
kinetic energy is negative, x < !xmax or x > xmax are called the classically forbidden 
regions, which the body can never reach if subject to the laws of classical mechanics. In 
quantum mechanics, there is a very small probability that the body can be found in the 
classically forbidden regions. 

Example: A particle of mass m , moving in the x-direction, is acting on by a potential 

,	 (10)
x 
x1 

U (x) = !U1 

x 
x1 

where U1 and x1 are positive constants and U (0) = 0 . 

a) Sketch x U1 as a function of x / x1 .U ( ) /

b)	 Find the points where the force on the particle is zero. Classify them as stable or unstable. 
Calculate the value of U (x) / U1 at these equilibrium points. 

c)	 For energies E that lies in 0 < E < (4 / 27)U1 find an equation whose solution yields the 
turning points along the x-axis about which the particle will undergo periodic motion. 

d)	 Suppose E = (4 / 27)U1 and that the particle starts at x = 0 with speed v0 . Find v0 . 

Solution: a) The figure below shows a graph of U (x) vs. x , with the choice of values 
x1 = 1.5 m , U1 = 27 / 4 J , and E = 0.2 J . 
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b) The force on the particle is zero at the minimum of the potential which occurs at 

dU " " 3 % " 2 % % 
Fx (x) = ! ' x' = 0 (11) (x) = U1 $ $ 3 ' x

2 ! $ 2dx # # x1 & # x1 & & 

which becomes 

x2 = (2x1 / 3)x . (12) 

We can solve Eq. (12) for the extrema. This has two solutions 

x = (2x1 / 3) and x = 0 . (13) 

The second derivative is given by 

d 2U " " 6 % " 2 % %


dx2 (x) = !U1 $
# 
$
# x1

3 
&
' x ! $

# x1
2 '
& &
' . (14)


Evaluating the second derivative at x = (2x1 / 3) yields a negative quantity 

d 2U " " % 2x " % % 2U
dx2 (x = (2x1 / 3)) = !U1 $ $ x

6
3 ' 3

1 ! $ x
2

2 ' ' = ! 
x 2

1 < 0 (15) 
# # 1 & # 1 & & 1 

indicating the solution x = (2x1 / 3) represents a local maximum and hence is an unstable point. 
At x = (2x1 / 3) , the potential energy is given by the value U ((2x1 / 3)) = (4 / 27)U1 . 

Evaluating the second derivative at x = 0 yields a positive quantity 

d 2U " " % " % % 2U


dx2 (x = 0) = !U1 $ 
#
$ x

6
3 
&
' 0 ! 

#
$ x

2
2 
&
' ' = 

x 2
1 > 0 (16)


# 1 1 & 1 

indicating the solution x = 0 represents a local minimum and is a stable point. At the local 
minimum, x = 0 , the potential energy U (0) = 0 . 

c) Because the kinetic energy K(x) = E ! U (x) > 0 must be always be positive, for energies in 
the range of 

U (0) = 0 < E < U (2x1 / 3) = 
4U1 . (17) 
27 
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the particle will undergo periodic motion, between the values xa < x < xb < 2x1 / 3, where xa and 
xb are the turning points and are solutions to the equation 

E = U (x) = !U1 $
" " x % 

3 
" x % 

2 % 

' ' .	 (18) $ ' ! $$# # x1 & # x1 & &' 

For E > U (2x1 / 3) = 
4U1 , Eq. (18) has only one solution xa and for all values of x > xa27 

the kinetic energy K(x) = E ! U (x) > 0 which means that the particle can “escape” to 
infinity but can never enter the region x < xa . 

For E < U (0) = 0 , the kinetic energy is negative for all values of x i.e. 
K(x) = E ! U (x) < 0; ! " < x < +" . All regions of space are forbidden. 

d)	 If the particle has speed v0 at x = 0 where the potential energy is zero U (0) = 0 , 

the energy of the particle is constant and equal to kinetic energy  


E = K(0) = 
1 mv0

2 .	 (19) 
2 

Therefore 

(4 / 27)U1 = 
1 mv0

2 (20) 
2 

which we can solve for the speed v0 , 

v0 = 8U1 / 27m . (21)


Appendix 13.A: Energy Changes Near the Surface of the Earth 

Consider Equation (13.5.4) from the text, 

# 1 1 & # 1 1 & 
"!Ksystem = 

$% 2 
m e (vearth, f )

2 " 
2 

m e (vearth,0 )
2 

'( 
+ 
$% 2 

mb (vbody, f )
2 

2 
mb (vbody,0 )

2 

'( 
.(13.A.1) 

Re-express this relation in terms of the momenta, 

12/28/2010 20




1 1 
!K =
system m e ((vearth, f )

2 " (vearth,0 )
2 ) + mb ((vbody, f )

2 " (vbody,0 )
2 )

2 2


13.A.2) 

1


2
[m e (vearth, f ) " (vearth,0 )][(vearth, f ) + (vearth,0 )] 

(
= 

1

+
 [mb (vbody, f ) " (vbody,0 )][(vbody, f ) + (vbody,0 )] 2


1 1

= !pearth [(vearth, f ) + (vearth,0 )] +
 !pbody[(vbody, f ) + (vbody,0 )]. 2 2 

From conservation of momentum, we have !pearth = !pbody . In the example in the text, 
the observations were made in the frame of the earth, and so the speed of the earth, both 
initial and final, are vanishingly small compared to the speed of the falling body.  
Therefore the first term in square brackets in the last line of (13.A.2) is negligible 
compared to the second, and the change in kinetic energy (but not momentum!) of the 
earth may be ignored for the purposes of this example. 

12/28/2010 21




MIT OpenCourseWare 
http://ocw.mit.edu 

8.01SC Physics I: Classical Mechanics 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

12/28/2010 22


http://ocw.mit.edu
http://ocw.mit.edu/terms

