
    
 

     
 

            
             

                
         

 

 
 

             
              

             
       

 

 
 
 

          
 

 

     

Problem Solving Circular Motion Dynamics 

Problem 1: Double Star System 

Consider a double star system under the influence of gravitational force between the 
stars. Star 1 has mass m1 and star 2 has mass m2 . Assume that each star undergoes 
uniform circular motion about the center of mass of the system. If the stars are always a 
fixed distance s apart, what is the period of the orbit? 

Solution: Choose radial coordinates for each star with origin at center of mass. Let r̂1 be 
a unit vector at Star 1 pointing radially away from the center of mass. Let r̂2 be a unit 
vector at Star 2 pointing radially away from the center of mass. The force diagrams on 
the two stars are shown in the figure below. 

! !From Newton’s Second Law, F = m a , for Star 1 in the radial direction is 1 1 1 

1 2 2r̂ : "G m m = "m r ! .1 2 1 1s 
We can solve this for r1 , 



 

 

 
         

 

 

     
 

 

                    
        

                        

 

 
    

 

 

 
    

 
 

 

 
            

 

r = G m2 .1 2 2! s 

! !Newton’s Second Law, F = m a , for Star 2 in the radial direction is2 2 2 

m m r̂ : "G 1 2 = "m r ! 2 .2 2 2 2s 
We can solve this for r2 , 

m r = G 1 .2 2 2! s 

Since s , the distance between the stars, is constant 

m m (m + m1 )s = r + r = G 2 + G 1 = G 2 
1 2 2 2 2 2 2 2s .! s ! s ! 

Thus the angular velocity is 

) 1 2" (m + m #
! = $G 2

3 
1 
% s& ' 

and the period is then 

2 32! # 4! s $
1 2 

T = .&&" 
= %% G (m2 + m1 )(' 

As will be seen later, this result is a variation of Kepler’s Third Law. 



      
 

                  
           

             
         

 

 
 

               
         

 
             

           
 

              
           

 
               

      
 

Problem 2: Circular motion: banked turn 

A car of mass m is going around a circular turn of radius R , that is banked at an angle ! 
with respect to the ground. The coefficient of static friction between the tires and the road 
is µ . Let g be the magnitude of the gravitational acceleration. You may neglect kinetic 
friction (that is, the car’s tires do not slip). 

a)	 At what speed v0 should the car enter the banked turn if the road is very slippery 
(i.e. µ ! 0 ) in order not to slide up or down the banked turn? 

b)	 Suppose µ tan! < 1. What is the maximum speed v max with which the car can 
enter the banked turn so that it does not slide up the banked turn? 

c)	 Suppose µ tan! < 1. What is the minimum speed vmin with which the car can 
enter the banked turn so that it does not slide down the banked turn? 

d)	 Suppose the car enters the turn with a speed v such that v max > v > v0 . Find an 
expression for the magnitude of the friction force. 



 
 

                

              

        
           

 

 
 

    
 

 
   

  

      
 

           
 

    
 
 

        
 

 
  

  

 
     

 
   

 

 
  

  

 
             

 

Solution: 

a) We will first consider the case where the friction ! 0 is approximately zero. fstatic 

Denote the speed of the car by v0 . Choose cylindrical coordinates as shown in the figure 

below. Choose unit vectors r̂ pointing in the radial outward direction and k̂ pointing 
upwards. The force diagram on the car is shown in the figure below. 

! !Newton’s Second law, F = ma , becomes 

mv0
2 

r̂ : ! N sin" = ! (2.1)
r 

k̂ : N cos! " m g = ma z (2.2) 

Because the car is traveling in a circle the acceleration in the z -direction is zero 

az = 0 (2.3) 

and so the force equations (2.8) and (2.9) become 

v0
2 

!N sin" = !m (2.4)
r 

N cos! = m g (2.5) 

Dividing these equations yields 

v0
2 

tan! = (2.6)
r g 

We now solve for the minimum speed, v0 , necessary to maintain a circular path 



 
    

 
              

            
    

 

 
 
 

    
 

   

   
 

        
       

 
    

 
     

 
      

 

 
  

  

 
     

 
   

 

 
  

  

1 

v = (r g tan! )min 
2 (2.7) 

b) We now consider the case when the car is traveling slow enough, i.e. with minimum 
speed v = vmin , such that it just starts to slip down the bank. The force diagram on the car 
is shown in the figure below. 

! !Newton’s Second law, F = ma , becomes 

2 

r̂ : " N sin ! + f cos ! = " 
mv (2.8)static r 

k̂ : N cos ! + f sin ! " m g = ma (2.9)static z 

When v = vmin , the just-slipping condition is that the acceleration in the z -direction is 
zero and the static friction has its maximum value: 

az = 0 (2.10) 

= µ N (2.11)fstatic 

and so the force equations (2.8) and (2.9) become 

vmin 
2 

! N sin" + µN cos" = !m (2.12)
r 

N cos! + µN sin! = m g (2.13) 

Dividing these equations yields 

2! sin" + µ cos" vmin = ! (2.14)
cos" + µ sin" r g 



 
       

   
 

 
  

  

 
             

           
       

 
                 

         
          

 

 
 

             
        

 

   

      
 

         
    

 

 
  

  

 
     

 
   

 

which can then be solved for the minimum speed, vmin , necessary to avoid sliding down 
the embanked turn. 

1 

# # sin! " µ cos! & & 2 

vmin = r g (2.15)( ($% $% cos! + µ sin! ' '

This result should be checked for the limiting values of µ . In the limit µ ! 0 , 
vmin ! rg , the result we found in part a). In the limit µ ! tan" , vmin ! 0 , which is 
the static case of a block on an incline. 

c) Now let’s consider the case that the car is at the maximum speed such that it just starts 
to slip up the inclined plane. Then the direction of static friction points down the incline 
plane and the free body force diagram is shown in the figure below. 

The analysis is identical to the previous case except for changing the signs of the 
components of static friction. Thus Newton’s Second Law becomes 

2 

r̂ : " N sin ! " f cos ! = " 
mv (2.16)static r 

k̂ : N cos! " f sin! " m g = 0 (2.17)static 

When v = vmax , the static friction has its maximum value given by Eq. (2.11), and so the 
force equations now become 

2v
!N sin" ! µN cos" = !m max (2.18)

r 

N cos! " µN sin! = m g (2.19) 

Dividing these equations yields 



 
  

  

 
       

   
 

 
  

  

 
             

              
               

     
 

 
 

                  
             

  
 
 
 

 
  

  

     
 

      
 

! sin" ! µ cos" v2 

= ! max (2.20)
cos" ! µ sin" r g 

which can then be solved for the maximum speed, vmax , necessary to avoid sliding down 
the embanked turn. 

1 

# # sin! + µ cos! & & 2 

v = r g (2.21)( (max $% $% cos! " µ sin! ' '

The figure below shows a plot of v2 / r g vs. µ when ! = 45 ! . The shaded area 
represents the set of points (µ,v2 / r g ) where the car remains in a circular path. Above 
that is the set of points in which the car will slid outward and below the set of points in 
which the car will slide inward. 

d) The analysis is the same as in part c) but the magnitude of the static friction is less 
than its maximum value. Hence we can multiply Eq. (2.16) by cos! and Eq. (2.17) . by 
sin! . 

2 " = ! 
mv2 

cos cos" (2.22)! N sin" cos" ! fstatic r 
N cos! sin! " f sin2 ! " m g sin! = 0 (2.23)static 

Now add the two equations to yield 



 
  

  

 
              

 
 

 
  

  

 

2mv
(cos2 " + sin2 ") ! m g sin" = ! cos" (2.24)! fstatic r 

Use the identity (cos2 ! + sin2 !) = 1 and solve Eq. (2.24) for the magnitude of the static 
friction force 

# v2 &
f = m 

$% r '
cos! " g sin! (2.25)static ( 



  
 

                     
               
 

 

 
 

               
              

              
 

                    
       

 
 

 
          

 

 
 

       
 

   
 

 
 

                                                
             

           

Problem 3 

Sally swings a ball of mass m in a circle of radius R in a vertical plane by means of a 
massless string. The speed of the ball is constant and it makes one revolution every t0 

seconds. 

a) Find an expression for the radial component of the tension in the string T (!) as a 
function of the angle ! the ball makes with the vertical 1. Express your answer in terms of 
some combination of the parameters m , R , t0 and the gravitational constant g . 

b) Is there a range of values of t0 for which this type of circular motion can not be
 

maintained? If so, what is that range?
 

Solution:
 

a) The free body diagram is shown in the figure below. 

! !Newton’s second Law F = ma in the radially inward direction becomes 

!Tr ! mg cos" = !mR# 2 . 

Thus 

1Note added after the fact: The ball moves in a circle, but Sally's hand cannot remain at 
the center of the circle if a constant speed is to be maintained. 



   
 

              
    

 

  
 

 
              

             
          

 

  
 

 
  

 

  
 

 
            

               

              
      

 

  
 

 
 

Tr = mR! 2 " mg cos# 

Because the angular speed ! = 2" / t0 , the magnitude of the radial component of the 
tension in the string is 

4! 2 RTr = m(
2 

" g cos#)
t0 

b) The magnitude of the radial component of the tension in the string Tr must 
always be greater than zero. When ! / 2 "# " 3! / 2 , cos(!) " 0 hence Tr > 0 . For the 
range of angle 0 !" < # / 2 and 3! / 2 "# < 2! , cos(!) > 0 and so the condition 

4! 2 RT = m( " g cos#) > 0 r t0
2 

implies that 

2! 
R 

g cos" 
> t0 . 

At ! = 0 , where mg makes the maximum contribution to the required radially inward 
directed force, cos(0) = 1, for all other values of ! in the range of angle 0 < ! < " / 2 and 
3! / 2 < " < 2! , cos(!) < 1 Thus to maintain circular motion the period t0 must be less 
than a critical value (t0 )c 

R 
.t0 < (t0 )c = 2! 

g 



  
 

             
        
            

                    
              

             
               

         
 

              
      

 
            

            
 
 

           
 
 

 
 

             
       

         
          

           
 

 
    

 
      

 

 
  

  

Problem 4 

A ball of mass m is connected by a spring to shaft that is rotating with constant angular 
velocity ! . A student looking down on the apparatus sees the ball moving 
counterclockwise in a circular path of radius r . When the spring is unstretched, the 
distance from the mass to the axis of the shaft is r0 . The orbital plane of the ball is a 
height h above the ground. Suddenly the ball breaks loose from the spring, flies through 
the air, and hits the ground an unknown horizontal distance d from the point the ball 
breaks free from the spring. Let g be the magnitude of the acceleration due to gravity. 
You may ignore air resistance and the size of the ball. 

a)	 What is the magnitude of the spring constant k ? Show all your work. Answers 
without work will not receive credit. 

b)	 Find an expression for the horizontal distance d the ball traveled from the point 
the ball breaks free from the spring until it hits the ground. 

Solution: 

a) Given that gravity may be neglected, the only force on the ball is the spring force. The 
ball is still moving with uniform circular motion, with acceleration directed inward, and 
so the spring force is directed inward, horizontal and perpendicular to the ball’s motion. 
The magnitude of the spring force is given by Hooke’s Law, Fspring = k !l = k(r " r0 ) . 
From Newton’s Second Law, this force is related to the inward acceleration by 

F = k(r ! r ) = m" 2 r .	 (4.1)spring 0 

Solving for the spring constant k gives 

m! 2 r .	 (4.2)k = 
(r " r0 ) 



 
              

            
             

      
                

            
         

 
     

 

b) Just after the ball breaks free, it is moving horizontally, and its velocity has not 
changed from the uniform circular motion velocity. The speed is then that of uniform 
circular motion , v = ! r . The ball is in free fall, moving with constant x -component of 
velocity and moving vertically with position above the ground given by y = h ! gt2 / 2 . 

The ball will hit the ground when y = 0 , at time t1 = 2h / g . The ball will move in the 

horizontal direction with the constant speed found v = ! r for a time t1 = 2h / g . The 
distance d is then the product of these two quantities, 

d = r! 2h / g . (4.3) 



 
     

 
            

             
             

           
             

           
 

 
 

            
           

 
                

   
 

             
              

            
 

 
 

         
     

 
   

 
             

                

                

Problem 5: Circular Motion 

A governor to control the rotational speed of a steam engine was invented by James Watt. 
Two spheres were attached to a rotating shaft by rigid arms that were free to rotate up 
and down about a pivot where they attached to the shaft, as in the diagram above. As the 
arms pivoted up and down they actuated a mechanism to control the throttle of the steam 
engine. Assume the rigid arms have length l and no mass. All of the mass is then 
concentrated in the two spheres at the end of the arms, each having mass m. 

a) Describe the acceleration of the spheres. Explaining and quantifying your knowledge of 
the acceleration will help you model the problem. Show all relevant free body diagrams. 

b) Show that there is a minimum angular velocity !min below which the governor will not 
function as intended. 

c) Derive an expression for the radius r of the circular path followed by the spheres. 
Express your answer only in terms of as few of the quantities m, ! , l, and g (the 
acceleration due to gravity) as you can. (Do not use the angle ! in your answer). 

Solutions: 

a) Each sphere moves in a horizontal circle of radius r = l sin ! with period T = 2! /" , 
and hence an inward radial acceleration of magnitude 

ar = ! 2r = ! 2l sin " . (5.1) 

Thus, there must be a net inward force of magnitude F = m a = m! 2l sin " . This force net r 
!!is the vector sum of the gravitational force mg and the force Frod that the rod applies to 
! 

the ball (since we call the period “T ,” we don’t want to use “ T ” for a “tension force”). 



            

             
 

 
             

         

 
 

          
  

 

   

 
         

       

   

 
       

 
            

      
 

   
 

! 
The gravitational force has no horizontal component, so the vertical component of Frod!!must balance the weight mg and the horizontal component of Frod must have magnitude 
F = m a = m! 2l sin " .net r 

A free body diagram for the right-hand sphere is shown below (the diagram for the left-
hand sphere is of course just a reflection and won’t be shown here). 

b) Expressing the answer to part a) mathematically, the two components of Newton’s 
Second Law are: 

k̂ : Frod cos ! # mg = 0 
(5.2) 

r̂ : Frod sin ! = m" 2l sin !. 

Eliminating sin! (why can we exclude the case sin ! = 0 ?) from the second expression 
in (5.2) yields Frod = m! 2l and substitution into the first and rearranging yields 

g
cos ! = 2 . (5.3)

l" 

We must have cos ! < 1 , or ! 2 > g l / , so !min = /g l . 

c) Using r = l sin ! = l 1" cos 2 ! from part a) and cos ! = g l / " 2 from part b) above, we 
can eliminate the angle ! with the result 

2 2 2 4r = l 1" g / l! = l " g /! . (5.4)( )2 



                 
   

 

Note that this is consistent with part b); for a positive argument of the square root, we 
must have ! > !min . 



 
   

 
            

              
            
              
               

 
              

    
 

            
         

  

 
 
 

            
    

   

 
 

 
 

Problem 6: 

Two identical coins each of mass m are stacked on top of each other exactly at the rim of 
a turntable, a distance R from the center. The turntable turns at constant angular speed 
! and the coins rides without slipping. Suppose the coefficient of static friction between 
the turntable and the coin is given by µ1 and the coefficient of static friction between the 
the coins is given by µ2 with µ2 < µ1  . Let g be the gravitational constant. 

a)	 What is the magnitude of the radial force (friction force) exerted by the turntable 
on the bottom coin? 

b)	 As the angular speed increases which coin slips first or do they both slip at the 
same instant? What is the maximum angular speed !max such that no slipping 
occurs? 

Solution: We choose a polar coordinate system and the free body force diagrams on each 
coin are shown in the figure below. 



         
                 

        
         

    
 

          
         

  
     

 
         

 
  
     

 
            

 
     

 
      

 
     

 
             

   
 

     
 

              
   

 
          

             
   

 
 

         
      

     
 

        

We will now apply Newton’s Second Law to each coin and determine the magnitude of 
the radial force exerted by the turntable on the bottom coin, fbG . The key point is that the 
static friction between the coins form an action-reaction pair, (neither coin is slipping). 
So the static friction that makes the top coin accelerate inward also acts on the bottom 
coin in the opposite direction (radially outward). 

Newton’s Second Law on the bottom coin in the radial direction, noting that the 
centripetal acceleration has magnitude ar = ! R" 2 , is given by 

= !m R" 2 . (6.1)! fbG + fbt 

Newton’s Second Law on the top coin in the radial direction, noting that the centripetal is 
given by 

= !m R" 2 . (6.2)! ftb 

Newton’s Third Law, requires that fbt = So substituting Eq. (6.2) becomes ftb . 

fbt = mR! 2 . (6.3) 

Substituting Eq. (6.3) into Eq. (6.1) then yields 

+ m R" 2 = !m R" 2 . (6.4)! fbG 

Hence the magnitude of the radial inward force exerted on the bottom coin due to the 
turntable is then 

= 2m R! 2 (6.5)fbG 

So the static friction on the bottom coin is twice the magnitude of the static fiction on the 
upper coin. 

In general slippage between surfaces will occur because static friction has a maximum 
possible value f max = µN . So we must find the magnitude of the normal force between 
the relevant surfaces. 

Applying Newton’s Second Law to the top coin in the z-direction, noting that the coin is 
static hence az = 0 , yields 

! mg = 0 . (6.6)Ntb 

Thus the normal force between the coins is 



 
    

 
          

  
 

     
 

         
 

 
    

 
           

 

 
  

  

 
      

 
     

 
           

  
 

     
 

          
 
     

 
          

 
 

 
  

  

 
            

 
 

    
 

            

= mg . (6.7)Ntb 

The top coin will slip when the static friction between the two coins reaches its 
maximum value 

( ftb )max = µ2 Ntb = µ2mg . (6.8) 

We substitute Eq. (6.8) in to Eq. (6.2) and find 

µ mg = m R! 2 . (6.9)2 max,t 

So we solve for the maximum angular speed at which the top coin will slip 

µ2 g! = . (6.10)max,t R 

Applying Newton’s Second Law to the bottom coin in the z-direction, 

! mg = 0 . (6.11)Nbg ! Nbt 

Noting that Nbt = mg . Thus the normal force between the turntable and the bottom = Ntb 

coin is 

Nbg = 2mg . (6.12) 

The bottom coin will slip when the static friction between the turntable and the bottom 
coin is 

( fbG )max = 2µ1mg . (6.13)= µNbG 

Using Eq. (6.5), we can find the maximum angular speed such that the bottom coin will 
slip 

µ1g! = . (6.14)max,b R 

Comparing Eqs. (6.10) and (6.14), and noting that µ2 < µ1 we see that 

! < ! (6.15)max,t max,b . 

Thus as we increase the angular velocity the top coin will slip first. 



    
 
               

            
            

              
           

 

 
 

 
 

              
             

         
             

          
               

   
 

   
 

   
 

   
 

       
 

   
 

      
 

   

Problem 7 Whirling Stone 

A stone (or a ball in the demo), attached to a wheel and held in place by a string, is 
whirled in circular orbit of radius R in a vertical plane. Suppose the string is cut 
when the stone is at position 2 in the figure, and the stone then rises to a height h 
above the point at position 2. What was the angular velocity of the stone when the 
string was cut? Give your answer in terms of R , h and g . 

Solution: 

There are two distinct stages of motion. The first is circular motion in which the stone is 
being whirled at a speed v0 when at position 2. Once the string is cut, the stone is moving 
vertically upwards, interacting gravitationally with the earth. For the vertical motion, set 
t = 0 when the string is just cut. Let’s choose a coordinate system with the origin at point 
2 in the figure and the positive y -direction upwards. Thus y0 = 0 . The key point to note 
is that for the vertical motion the initial speed when the string is cut is the speed of the 
uniform circular motion, 

vy ,0 = v0 (7.1) 

Newton’s Second Law becomes 

!mg = ma y . (7.2) 

The y - component of the acceleration is then 

ay = !g . (7.3) 

The y -component of the velocity is given by 

vy = v0 ! g t . (7.4) 



 
              
 

 
   

 
               

 

   

 
         

 

   

 
       

 

   

 
         

 
   

 
        

 

   

 
       

 
 

   

 
            

 
 
 

  

The stone reaches its highest point at time t = t1 when the y -component of the velocity is 
zero, 

vy (t = t1) = v0 ! g t 1 = 0 (7.5) 

We can solve Equation (7.5) for the time it takes for the stone to reach its highest point, 

vt = 0 . (7.6)1 g 

The y -component of the position at the highest point is 

1 2y t ( = t ) = h = v t ! g t 1 . (7.7)1 0 1 2 

Substitute Equation (7.6) into Equation (7.7) to obtain 

1 v2 h = 0 . (7.8)
2 g 

We can solve Equation (7.8) for the speed of the circular motion, 

v0 = 2gh . (7.9) 

The angular velocity ! is related to the speed by v0 = ! R , so 

! = 
v0 = . (7.10)
R 2 

2 2g h g h 
R R 

= 

The last expression in Equation (7.10) is included to make checking the dimensions 
slightly easier; 

" 2g h # L T !2 # L 
!2 

" $% &dim = = T , (7.11)' 2 ( 2% R & L 

and so the expression for ! in Equation (7.10) has dimensions of inverse time, as it 
should. 



       
 

          
            

           
             

             
               
              
                   

   
 

 
 

           
 

 
             

     
 

           
      

 
 

 
         

           
         

           

             
           

Problem 8 Uniform Circular Motion Rotating Device 

In the device shown below, a horizontal rod rotates with an angular velocity ! about a 
vertical axis. In the diagram, the horizontal string extending to the right at the middle of 
the apparatus represents the driving torque that maintains constant angular velocity ! . 
An object 1 with mass m1 is constrained to slide along the horizontal rod. A massless 
inextensible string of length s is attached to one end of object 1, passes over a massless 
pulley, and attaches to a suspended object 2 of mass m2 . Object 2 hangs along the central 
vertical axis of the device. Assume the coefficient of static friction between the object 1 
and the rod is µs , and use g as the gravitational constant. Object 1 moves in a circle of 
radius r . 

a) With what angular velocity can the device spin such that the static friction force is 
zero? 

b) What is the minimum angular velocity with which the device can spin so that object 1 
does not move radially inward? 

c) What is the maximum angular velocity with which the device can spin so that the 
object 1 does not move radially outward? 

Solutions: 

(New figure needed – make sure positive radial direction is consistent.)
 
For all parts, use coordinates with the radially outward direction being positive r̂ and the
 

ˆupward vertical direction being positive k . The forces on object 1 are: gravity, 
! ! 

m g = !m g k̂ ; the force due to the tension in the connecting string, T = !T r̂ ; the 1 1 ! ! 
normal force N = N k̂ ; and the frictional force f = fr r̂ , where fr is the radial 
component of the frictional force, and may be positive, negative or zero. 



 
            

            
             

             
 

 
           

 

 

  

  

 
              
             

             
     

 
     

 
            

                
 

 
  

  

 
       

 

 
  

  

 
              

      
 

         
              
         

             
      

 
     

The problem statement refers to “static friction,” so we should take this to mean that 
object 1 is not moving with respect to the horizontal rod. There must be an inward force 
to keep object 1 moving in a circle. A contribution to this force will be the tension T in 
the string. The string also supports the hanging mass against gravity, so T = m2 g in all 
parts. 

a) Given that there is no friction force, the tension must supply the inward force; 

" 2!T = !m2 g = !m1 r 

m2 g (8.1)
" = . 

m r1 

b) If the angular speed ! is less than that found in part a), the tension in the string would 
be greater than that needed to maintain circular motion, and so some other force would be 
needed in addition to the tension. This must be the friction force, directed outward; fr is 
positive. The above equation becomes 

" 2!T + fr = !m2 g + fr = !m1 r . (8.2) 

Equation (8.2) is indeterminate, as it contains three variables. However, we are given 
that ! has its minimum value, which means that fr has its maximum value, given by 

fr = µs N = µs g . (8.3)( ) m1max 

Using this in Equation (8.2) and solving for !min yields 

# m2 
& g

" µ . (8.4)!min = s ($% m1 ' r 

Note that this implies that if the coefficient of static friction is sufficiently high, 
could be as low as zero. !min 

c) Repeat the above analysis, with the appropriate sign and direction changes: 
If the angular speed ! is greater than that found in part a), the tension in the string would 
be less than that needed to maintain circular motion, and so some other force would be 
needed in addition to the tension. This must be the friction force, directed inward; fr is 
negative. Equation (8.2) is still valid, 

" 2!T + fr = !m2 g + fr = !m1 r . (8.5) 



 
            

                
    

 
 

    
 

       
 

 
  

  

 
 

Equation (8.5) is indeterminate, as it contains three variables. However, we are given 
that ! has its maximum value, which means that fr has its minimum (that is, most 
negative) value, given by 

f = !µ N = !µ m g . (8.6)r s s 1( )min 

Using this in Equation (8.6) and solving for ! max yields 

" m2 
% g! = 

#$ m1 

+ µ
& r 

. (8.7)max s ' 



            
 

                
       

 
             
           
                

        
 

 
 

             
               

 

 
 

        
 

 
   

  

 
             

 

 
  

  

 
           

 

 
  

  

 
             

                
            

 

Problem 9 Universal Law of Gravitation and Orbital Uniform Circular Motion 

A person, abandoned on a small spherical asteroid of mass m1 and radius R , sees a satellite 
orbiting the asteroid in a circular orbit of period T . 

a) What is the radius rsat of the satellite’s orbit? 
b) What is the magnitude of the velocity of the satellite? 
c) If the asteroid rotates with a period T a , at what radius must the satellite orbit the asteroid 

so that the satellite appears stationary to a person on the asteroid? 

Solution: 

a) The only force on the satellite is the gravitation force pointing radially inward. The force 
diagram on the satellite is given in the figure below, with the satellite’s mass denoted m2 . 

Newton’s Second Law in the radial direction is given by 

m1 m2r̂ : ! G 2 = !m2rsat (2" / T )2 . (9.1) 
rsat 

We can solve Equation (9.1) for the radius of orbit of the satellite, 

1/ 3 
"
 T 2m1G 

4! 2 

%
 
.
 (9.2)
r = sat $

#
 
'
&
 

b) The magnitude of the velocity of the satellite is 

1/3 1/3 # T 2 & 2" # 2" &m1 . (9.3)v = r ! = r (2" / T ) = G (sat sat % ( 
m
4

1 

" 2 ' T 
= 
$% 

G
T '$

c) In order for the satellite to appear stationary to an observer on the satellite, the satellite 
must orbit with the same rotational asteroid as the asteroid. Thus we can substitute T = T a 

in Equation (9.2) and find that the radius of the orbit must be 



 
  

  

 
 

1/3 
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Problem 10 Uniform Circular Motion: Two strings 

An object with mass m is connected to a vertical revolving axle by two massless 
inextensible strings of length l , each making an angle of 45! with the axle. Both the axle 
and the mass are revolving with angular velocity! . Gravity is directed downwards. 

a) Draw a clear force diagram for the object. 

b) Find the tensions T in the upper string and Tlower in the lower string,. upper 

Solution: 
! 

a) The forces acting on the whirling object are the tension of the upper string, T ; the upper ! !tension in the lower string, ; and the gravitation force mg . Choose units vectors Tlower 

pointing radially outward, r̂ , and vertically upward, k̂ . The force diagram on the object 
is shown in the figure below. 

Applying Newton’s Second Law, we have that 

r̂ : ! T sin45! ! T sin45! = !ml sin 45!" 2 (10.1)upper lower 

k̂ : T cos45! ! T cos45! ! m g = 0 . (10.2)upper lower 



    
 

 
    

 

      
 

 
    

 
             

 
 

 
  

  

 
             

 
 

  
  

 
              

            
           

 
 

Equation (10.1) simplifies to 

T + T = ml! 2 . (10.3)upper lower 

Using cos45! = 2 / 2 = 1 / 2 , Equation (10.2) becomes 

T ! T = 2mg . (10.4)upper lower 

We can solve for T by adding Equations (10.3) and (10.4) and then dividing by two, upper 

yielding 

T = m l( ! 2 + 2g) / 2 . (10.5)upper 

We can solve for Tlower by subtracting Equation (10.4) from Equation (10.3) yielding 

T = m l( ! 2 " 2g) / 2 . (10.6)lower 

It’s important to note that the result of Equation (10.6) cannot be valid unless the angular 
frequency ! is sufficiently large; if the frequency is smaller than the limiting value, the 
lower string would sag, and the 45! could not be maintained. 
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