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Module 10: Circular Motion Dynamics 
 
10.1 Newton’s Second Law and Circular Motion 
 
We have already shown that when an object moves in a circular orbit of radius  R  with 
angular velocity ! , it is most convenient to choose polar coordinates to describe the 
position, velocity and acceleration vectors. In particular, the acceleration vector is given 
by  
 

 
    

!a = !R d"
dt

#

$%
&

'(

2

r̂ + R d 2"

dt2 "̂ = !R) 2!r + R* "̂ . (10.1.1) 

 
Then Newton’s Second Law  
 
    

!
F = m!a . (10.1.2) 

 
can be decomposed into radial and tangential components 
 
    Fr = !mR" 2 (circular motion) . (10.1.3) 
 
   F! = mR" (circular motion) . (10.1.4) 
 
For the special case of uniform circular motion,  ! = 0  and so the sum of the tangential 
components of the force acting on the object is must therefore be zero, 
 
   F! = 0 (uniform circular motion) . (10.1.5) 

 
10.2 Universal Law of Gravitation and the Circular Orbit of the Moon 
 
An important example of (approximate) circular motion is the orbit of the Moon around 
the Earth. We can approximately calculate the time T  the Moon takes to complete one 
circle around the earth (a calculation of great importance to early lunar calendar systems, 
which became the basis for our current model.) Denote the distance from the moon to the 
center of the earth by e, mR .  
 Since the Moon moves in a circle, it is accelerating towards the Earth. The radial 
acceleration has magnitude 
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According to Newton’s Second Law, there must be a centripetal force acting on 
the Moon directed towards the center of the Earth that accounts for this inward 
acceleration. 
 
Universal Law of Gravitation 
 
 Newton’s Universal Law of Gravitation (see Section 3.3) describes the 
gravitational force between two bodies 1 and 2 with masses 1m  and 2m  respectively. This 
force is a radial force (always pointing along the radial line connecting the masses) and 
the magnitude is proportional to the inverse square of the distance that separates the 
bodies. Then the force on body 1 due to the gravitational interaction between the bodies 
is given by Equation 3.3.11, 
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1, 1,22

1,2

ˆm mG
r
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, (10.2.2) 

 
where 1,2r  is the distance between the two bodies and 1,2r̂  is the unit vector located at the 
position of body 1 and pointing from body 2 towards body 1. The Universal Gravitation 
Constant is 11 2 26.67 10 N m kgG ! != " # # . Figure 6.6 shows the direction of the forces on 
bodies 1 and 2 along with the unit vector 1,2r̂ .  
 

 
 

Figure 6.6 Gravitational force of interaction between two bodies 
 
 Newton realized that there were still some subtleties involved. First, why should 
the mass of the Earth act as if it were all placed at the center? Newton showed that for a 
perfect sphere with uniform mass distribution, all the mass may be assumed to be located 
at the center. (This calculation is difficult and can be found in Appendix B to this 
chapter.) We assume for the present calculation that the Earth and the Moon are perfect 
spheres with uniform mass distribution.  (This is actually a stronger condition than what 
we need;  a mass distribution that depends only on the distance from the center of the 
body, as explained in Appendix B.) 
 
 Second, does this gravitational force between the Earth and the Moon form an 
action-reaction Third Law pair? When Newton first explained the Moon’s motion in 
1666, he had still not formulated the Third Law, which accounted for the long delay in 
the publication of the Principia. The link between the concept of force and the concept of 
an action-reaction pair of forces was the last piece needed to solve the puzzle of the effect 
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of gravity on planetary orbits. Once Newton realized that the gravitational force between 
any two bodies forms an action-reaction pair, and satisfies both the Universal Law of 
Gravitation and his newly formulated Third Law, he was able to solve the oldest and 
most important physics problem of his time, the motion of the planets. 
 
 The test for the Universal Law of Gravitation was performed through 
experimental observation of the motion of planets, which turned out to be resoundingly 
successful. For almost 200 years, Newton’s Universal Law was in excellent agreement 
with observation. A sign of more complicated physics ahead, the first discrepancy only 
occurred when a slight deviation of the motion of Mercury was experimentally confirmed 
in 1882. The prediction of this deviation was the first success of Einstein’s Theory of 
General Relativity (formulated in 1915). 
 
 We can apply this Universal Law of Gravitation to calculate the period of the 
Moon’s orbit around the Earth. The mass of the Moon is 22

1 7.36 10 kgm = !  and the mass 
of the Earth is 24

2 5.98 10 kgm = ! .  The distance from the Earth to the Moon is 
8

e, m 3.82 10 mR = ! . Newton’s Second Law of motion for the radial direction becomes 
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= . (10.2.3) 

 
We can solve this equation for the period of the orbit, 
 

 
2 3

e,m

2

4 R
T

Gm
!

= . (10.2.4) 

 
Substitute the given values for the radius of the orbit, the mass of the earth, and the 
universal gravitational constant. The period of the orbit is 
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. (10.2.5) 

 
This period is given in days by 
 

 
  
T = 2.35!106 s( ) 1 day

8.64 !104 s
"

#$
%

&'
= 27.2 days.  (10.2.6) 

 
This period is called the sidereal month because it is the time that it takes for the Moon to 
return to a given position with respect to the stars.  
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The actual time   T1  between full moons, called the synodic month (the average period of 
the Moon’s revolution with respect to the sun and is 29.53 days, it may range between 
29.27 days and 29.83  days), is longer than the sidereal month  because the Earth is 
traveling around the Sun. So for the next full moon the Moon must travel a little farther 
than one full circle around the Earth in order to be on the other side of the Earth from the 
Sun.  
 

 
 

Therefore the time   T1  between consecutive full moons is approximately    T1 ! T + !T  
where    !T ! T / 12 = 2.3 days . So    T1 ! 29.5 days . 
 
Kepler’s Third Law and Circular Motion 
 
The first thing that we notice from the above solution is that the period does not depend 
on the mass of the Moon. We also notice that the square of the period is proportional to 
the cube of the distance between the Earth and the Moon, 
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This is an example of Kepler’s Third Law, of which Newton was aware. This 

confirmation was convincing evidence to Newton that his Universal Law of Gravitation 
was the correct mathematical description of the gravitational force law, even though he 
still could not explain what “caused” gravity. 
 
Worked Examples Circular Motion 
 
Example 1: A geostationary satellite goes around the earth once every 23 hours 56 
minutes and 4 seconds, (a sidereal day, shorter than the noon-to-noon solar day of 24 
hours) so that its position appears stationary with respect to a ground station. The mass of 
the earth is   me = 5.98 !1024 kg . The mean radius of the earth is 6

e 6.37 10 mR = ! . The 

universal constant of gravitation is   G = 6.67 !10"11 N #m2 #kg"2 . Your goal is to find the 
radius of the orbit of a geostationary satellite. Describe what motion models this problem. 
What is the radius of the orbit of a geostationary satellite? Approximately how many 
earth radii is this distance?  
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Solution: The satellite’s motion can be modeled as uniform circular motion. The 
gravitational force between the earth and the satellite keeps the satellite moving in a 
circle. The acceleration of the satellite is directed towards the center of the circle, that is, 
along the radially inward direction.  
 
The figure below is close to a scale drawing. 
 

 
 
 
Choose the origin at the center of the earth, and the unit vector r̂  along the radial 
direction. This choice of coordinates makes sense in this problem since the direction of 
acceleration is along the radial direction.  
 
Let r!  be the position vector of the satellite. The magnitude of r!  (we denote it as sr ) is 
the distance of the satellite from the center of the earth, and hence the radius of its 
circular orbit. Let !  be the angular velocity of the satellite, and the period is   T = 2! / " .  
The acceleration is directed inward, with magnitude 2

sr! ;  in vector form, 
 
 2

s ˆr!= "a r! . (2.8) 
 
Apply Newton’s Second Law to the satellite for the radial component. The only force in 
this direction is the gravitational force due to the Earth, 
 
 2

grav s s ˆF m r!= " r
!

. (2.9) 
 
The inward radial force on the satellite is the gravitational attraction of the earth, 
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Equating the r̂  components, 
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Solving for the radius of orbit of the satellite    rs , 
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. (2.12) 

                      
The period  T  of the satellite’s orbit in seconds is 86164 s  and so the angular speed is 
 

 5 12 2 7.2921 10 s
86164 sT

! !
" # #= = = $ . (2.13) 

 
Using the values of e, andG m!  in Equation (2.12), we determine sr ; 
 
 7

s e4.22 10 m 6.62r R= ! = . (2.14) 
 
Example 2: Two objects 1 and 2 of mass   m1  and   m2  are whirling around a shaft with a 
constant angular velocity ! . The first object is a distance d  from the central axis, and 
the second object is a distance 2d  from the axis. You may ignore the mass of the strings 
and neglect the effect of gravity. 
 

 
 

a) What is the tension in the string between the inner object and the outer object?  
 
b) What is the tension in the string between the shaft and the inner object? 
 
Solution: We begin by drawing separate force diagrams for each object. 
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Newton’s Second Law, 1 1 1m=F a

! ! , for the inner mass in the radial direction is 
 

   ̂r : T2 ! T1 = !m1 d" 2 . 
 
Newton’s Second Law, 2 2 2m=F a

! ! , for the outer mass in the radial direction is 
 

   ̂r :! T2 = !m2 2d" 2 . 
 
From the force equation for outer object, the tension in the string between the inner object 
and the outer object is  
 

  T2 = m2 2d! 2 . 
 

Using this result for    T2  in the force equation for the inner object yields 
 

  m2 2d! 2 " T1 = "m1 d! 2  
 
which can be solved for the tension in the string between the shaft and the inner object 
 

  T1 = d! 2 (m1 + 2m2 ) . 
 
 
Example 3 Tension in a Rope 
 
A uniform rope of mass  mand length  L is attached to shaft that is rotating at constant 
angular velocity ! . Find the tension in the rope as a function of distance from the shaft. 
You may ignore the effect of gravitation. 
 
Solution: 
 
Divide the rope into small pieces of length  !r , each of mass   !m = (m / L)!r . Consider 
the piece located a distance  r   from the shaft. The radial component of the force on that 
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piece is the difference between the tensions evaluated at the sides of the piece, 

  Fr = T (r + !r) " T (r) .   
 

 
 
The piece is accelerating inward with a radial component   ar = !r" 2 .  Thus Newton’s 
Second Law becomes 
 

 
  

Fr = !"m# 2r

T (r + "r) ! T (r) = !(m / L)"r r# 2 .
 (2.15) 

 
Denote the difference in the tension by   !T = T (r + !r) " T (r) . After dividing through by 
 !r Eq. (2.15) becomes  
 

 
  
!T
!r

= "(m / L) r# 2 .  (2.16) 

 
In the limit as   !r " 0 , Eq. (2.16) becomes a differential equation, 
 
 

 
  
dT
dr

= !(m / L)r . (2.17) 

 
From this, we see immediately that the tension decreases with increasing radius.  We 
shall solve this equation by integration  
 

 

  

T (r) ! T (L) =
dT
d "r"r = L

"r = r

# d "r = !(m$ 2 / L) "r
L

r

# d "r

= !(m$ 2 / L)(r 2 ! L2 )
= (m$ 2 / L)(L2 ! r 2 ).

 (2.18) 

 
We use the fact that the tension, in the ideal case, will vanish at the end of the rope, 
 r = L .  Thus, 
 
   T (r) = (m! 2 / L)(L2 " r 2 ).  (2.19) 
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This last expression shows the expected functional form, in that the tension is largest 
closest to the shaft, and vanishes at the end of the rope. 
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Example 4: Consider an object of mass m  that slides without friction on the inside of a 
cone moving in a circular orbit with constant speed 0v . The cone makes an angle !  with 
respect to a vertical axis. The axis of the cone is vertical and gravity is directed 
downwards. The apex half-angle of the cone is !  as shown in the figure below. Find the 
radius of the circular path and the time it takes to complete one circular orbit in terms of 
the given quantities and g .  
 

 
 
Solution: Choose cylindrical coordinates as shown in the above figure. Choose unit 
vectors r̂  pointing in the radial outward direction and k̂  pointing upwards. The force 
diagram on the object is shown in the figure below.  
 

 
 
The two forces acting on the object are the normal force of the wall on the object and the 
gravitational force. Then Newton’s Second Law m=F a

! !  becomes: 
2
0ˆ : cos

mvN
r

!
"

" =r    

ˆ : sin 0N mg! " =k   .       
 
These equations can be re-expressed as 
 

2
0cos
vN m
r

! =  

sinN mg! = . 
 
We can divide these two equations,  
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2
0

sin
cos

N mg
vN m
r

!
!
=  

 
yielding 
 

2
0

tan r g
v

! = . 

 
This can be solved for the radius, 
 

2
0 tanvr
g

!= . 

 
The centripetal force in this problem is the vector component of the contact force that is 
pointing radially inwards, 

 
 cent cos cotF N mg! != = , 

  
where sinN mg! = has been used to eliminate N  in terms of  m , g  and ! . The radius 
is independent of the mass because the component of the normal force in the vertical 
direction must balance the gravitational force, and so the normal force is proportional to 
the mass. Therefore the radially inward component of the normal force is also 
proportional to mass. Becasue both sides of Newton’s Second Law are proportional to the 
mass and after dividing out by the mass, the radius is also independent of the mass. 
 
Example 5:  A coin of mass m  (which you may treat as a point object) lies on a 
turntable, exactly at the rim, a distance R  from the center. The turntable turns at constant 
angular speed !  and the coin rides without slipping. Suppose the coefficient of static 
friction between the turntable and the coin is given by µ .   Let  g  be the gravitational 
constant. What is the maximum angular speed !max  such that the coin does not slip?  

 
Solution: The coin undergoes circular motion at constant speed so it is accelerating 
inward. The force inward is static friction and at the just slipping point it has reached its 
maximum value. We can use Newton’s Second Law to find the maximum angular speed 
!max . We choose a polar coordinate system and the free body force diagram is shown in 
the figure below.  
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The contact force is given by 
     

!
C =
!
N +
!
fs = N k̂ ! fsr̂ . (2.20) 

 
The gravitational force is given by 
 

    
!
Fgrav = !mgk̂ . (2.21) 

 
Newton’s Second Law in the radial direction is given by 
  
   ! fs = !m R" 2 . (2.22) 
 
Newton’s Second Law,  Fz = maz , in the z-direction, noting that the disc is static hence 

  az = 0 , is given by 
 0N mg! = . (2.23) 
 
Thus the normal force is  
 
 N mg= . (2.24) 
 
As !  increases, the static friction increases in magnitude until at max! !=  and static 
friction reaches its maximum value (noting Eq. (2.24)). 
 
 s max( )f N mgµ µ= = . (2.25) 
 
At this value the disc slips. Thus substituting this value for the maximum static friction 
into Eq. (2.22) yields  
 2

maxmg mRµ != . (2.26) 
 
We can now solve Eq. (2.26) for maximum angular speed !max  such that the coin does 
not slip  
 

 max
g
R
µ

! = . (2.27) 
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Example 6 A U-control airplane of mass  M  is attached by wires of length  L  and 
negligible mass to the “pilot” who controls the lift provided by the wing. (The wires 
control the plane’s elevator.) The plane’s engine keeps it moving at constant speed  v .   
 

a) Briefly describe how you intend to model the motion of the object.  What 
directions are you choosing for analyzing the components of your forces? Give 
your reasons. 

 
b) Find the total tension  T  in the wires when the plane is flown overhead in a circle 

so that the wires make an angle !  with the ground.  Remember that the wings can 
provide lift only in the direction perpendicular to their area, that is, in a direction 
perpendicular to the wires.  Think carefully before selecting the directions of the 
axes of your coordinate system.   

 
c) The plane will go out of control and crash if the tension is not maintained.  Given 

a particular speed  v  of the plane, is there some angle  !crit  which you would 

advise the pilot not to exceed? If possible, exhibit a speed   vsafe  at which the plane 
would be safe at any angle. 
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Solution: 
 
a) The “object” (the airplane) is moving in a horizontal circle.  The radius of the circle 
and the hence the period, for a given speed, will depend on the angle that the wires make 
with respect to the horizontal.  Anticipating parts b) and c), the radius of the circle will be 
  r = Lcos!  and hence the period of the circular motion will be   2!r / v = 2!Lcos" / v . 
 
One choice of coordinates is that shown in the free body diagram on the left below, with 
k̂  directed vertically upward and r̂  directed radially outward.  Two advantages to this 
choice are that the acceleration and the gravitational force are along the coordinate 
directions, and that this is the “standard,” perhaps used in previous problems. 
 
Another choice would be that shown on the right below.  The advantage to this system is 
that the unknown forces, including the tension to be determined in part b), are along the 
coordinate axes, and need not be decomposed.  However, the weight mg!  and the net 
force must be decomposed along the given axes. 
 
b) We’ll do this using both of the coordinate systems, starting with the “tilted” system on 
the right below.  Note that the î - and ĵ -directions are not the horizontal and vertical 
directions (except for the case  ! = 0 ). 
 

     
 
Applying Newton’s Second Law, with  

a = ar  as the magnitude of the centripetal 
acceleration, for the two coordinates, we have 
 

 
ˆ : sin cos
ˆ : cos sin .

T mg ma

N mg ma

! !

! !

+ =

" =

i

j
 (28) 

 
Now we go back to the question asked:  We want the find the tension but not the normal 
force.  We know that   a = v2 / r = v2 / Lcos! , so the first expression in (28) leads almost 
immediately to 
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T = m v2 / L ! g sin"( ) , (29) 
a very tidy result. 
 
If we used the coordinate system on the left above, Newton’s Second Law becomes 
 

 
ˆ : cos sin
ˆ : sin cos .
N T mg
N T ma

! !

! !

" =

+ =

k
r

 (30) 

 
The expressions in (30) are two equations in the two unknowns  N  and  T  and may be 
solved by standard methods.  For our immediate purpose, however, eliminate  N  by 
multiplying the first by  sin!  and the second by  cos!  and then subtract the first from the 
second, leading to Equation (29). 
 
Decide for yourself which coordinate system is “better” or “easier,” but keep in mind that 
either will work. 
 
c) Either way, we are now set to find the critical angle crit!  at which the tension as found 
in Equation (29) would go to zero,  

 
  
!crit = sin"1 v2

gL
#

$%
&

'(
. (31) 

 
We see that if   v

2 > gL , the critical angle is never reached, and all angles would be safe, 
so we have 
   vsafe = gL . (32) 
 
Notice that if  ! = 0  the rope lies in the plane of the airplane’s circular orbit,  sin! = 0 , 
and the tension   T = mv2 / L > 0  for all velocities (assuming the normal force N

!
, acting 

vertically upward, is sufficient to keep the plane flying). The other extreme value occurs 
when  ! " # / 2 . This corresponds to the radius of the orbit   r ! 0 ,  cos! " 1  and the 
tension   

T ! mv2 / L( ) " mg .  In order for the tension to stay positive,  v > gL  (which is 

consistent with  !crit "# / 2 ). 
 
Extra:  This problem did not ask for the normal force N

!
 (often called the “lift”), but it’s 

not hard to find  
 

  
N = mg v2 / L( ) tan! + cos!( ) . (33) 

 
From this we see that as  ! " # / 2 ,  N !"  and   r ! 0 , an unphysical result. 
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Appendix 6.B: The Gravitational Field of a Spherical Shell of Matter 
 
 Consider a spherical shell of radius  R  with mass Sm  that is uniformly distributed 

over the shell with mass per unit area S
24

m
R

!
"

= . 

In this appendix we will show the following two properties of the gravitational force that 
such a shell produces: 
 

1) The gravitational force on a point-like object of mass  m  placed outside a 
spherical shell of matter of uniform surface mass density !  is the same force that 
would arise if all the mass of the shell were located at the center of the sphere. 

 
2) The gravitational force on an object of mass  m  placed inside a spherical shell of 

matter is zero. 
 
In summary, 
 

 ( )
S

2
object ,S

ˆ,

,

mmG r R
r r

r R

!" >#
= $
# <%

r
F

0

!
!  (6.C.1) 

 
where r̂  is the unit vector located at the position of the object and pointing radially away 
from the center of the shell. 
 
We will use these properties to extend the results to the gravitational interaction between 
any two spherically symmetric bodies. 
 
Any rigorous derivation of the above result will require use of spherical coordinates.  
This appendix will not go into the details of spherical coordinates, but rely on the 
geometry suggested by Figure 6.B.1 below.  For a point on the surface of a sphere of 
radius r R= , the Cartesian coordinates are related to the spherical coordinates by 
 

 
sin cos
sin sin
cos

x R
y R
z R

! "

! "

!

=

=

=

 (6.C.2) 

 
where 0 θ π≤ ≤  and 0 2φ π≤ ≤ . 
 
You should be able to show quite easily that 2 2 2 2x y z R+ + = .  You might also note that 
the angle θ  in Figure 6.B.1 and Equations (6.C.2) is not the same as that in plane polar 
coordinates or cylindrical coordinates as shown in Figure 6.1 of the text.  The relations in 
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Figure 6.B.1 and Equations (6.C.2) are “Physics Notation,” as opposed to what is done in 
most math subjects and textbooks.  The age-old arguments for and against each system 
will not be presented here.  However, keep in mind two good reasons for using physics 
notation: 
 

• In most problems and derivations involving spherical symmetry, including this 
appendix, the angle θ  will have a more prominent role than the angle φ  and 
hence is given the more customary symbol for an angle. 

 
• As shown in Figure 6.B.1, we still have at any point on the sphere a right-handed 

coordinate system, with ˆˆ ˆ× =r θ φ , directed counterclockwise when viewed from 
above (from the positive z -direction). (The symbol “φ ” is the bold form of “φ ”, 
and hence is used for the unit vector is the φ -direction.)  Compare to ˆ ˆˆ× =r θ k  in 
cylindrical coordinates. 

 
The angle θ  is known as the colatititude, the complement of the latitude. 
 
We can and will choose our z -axis to be directed from the center of the sphere to the 
position of the object, at position 0

ˆz k , so that 0 0z ≥  Let  da  be an infinitesimal surface 
area element on the shell and let Sdm  be the infinitesimal mass element corresponding to 
 da . The area element  da  is given by 
 
 ( )( ) 2sin sinda R d Rd R d dθ φ θ θ θ φ= = . (6.C.3) 
 

 
Figure 6.B.1: infinitesimal area element 

 
Then the mass contained in that element is 
 
 2

S sindm da R d dσ σ θ θ φ= = . (6.C.4) 
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The contribution from Sdm  to the gravitational force on the object of mass  m  that lies 

outside the shell has a component pointing in the k̂ -direction and a radial component 
pointing towards the z -axis. If the object is inside the shell, the k̂ -component of the 
contribution to the force could be positive, negative or zero. By symmetry there is 
another mass element with the same differential mass Sdm  on the other side of the shell 
with same colatitude θ  but with φ  replaced by φ π± ; this replacement changes the sign 
of x  and y  in Equations (6.C.2) but leaves z  unchanged. This other mass element 
produces a gravitational force that exactly cancels the radial component of the force 
pointing towards the z -axis. The sum of the forces of these differential mass elements on 
the object has only a component in the k̂ -direction. Therefore we want only 
 

 ( ) S
object, S 2

ˆ ˆcoszz

mdmd dF G
s

α≡ = −F k k
r

 (6.C.5) 

 
where 
 

 2 2 2 0 0
0 0

cos2 cos    and   cos z z z Rs R z R z
s s

θ
θ α

ʹ′− −
= + − = = . (6.C.6)  

 
Figure 6.B.2:  Geometry for calculating the force. 
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In Equation (6.C.6), s  is the distance from any point on the ring to the position of the 
object, zʹ′  is the distance along the z -axis from the center of the shell to the plane of the 
differential ring and α  is the angle that the vector of magnitude s  from any point on the 
ring to the object makes with respect to the z -axis.  The geometry is shown in Figure 
6.B.2 above.  The circle in the figure is a cross-section of the spherical shell. 
 
 
Combining Equations (6.C.4), (6.C.5) and both expressions in (6.C.6), 
 

 ( )
( )

2
0S S

3 22 2 2 2
0 0

sin cos
cos

4 2 cos
z

R d d z Rmdm mmdF G G
s R R z R z

θ θ φ θ
α

π θ

−
= − = −

+ −
. (6.C.7) 

 
The expression in Equation (6.C.7) can be simplified in preparation for integration. Make 
a change of variables by letting 0 cosu z R θ= − . Then sindu R dθ θ=  and 
 
 2 2 2 2 2

0 0 0 02 cos 2s R z R z R u z zθ= + − = + − . (6.C.8) 
 
Substitution of Equation (6.C.8) and the expression for u  and du  gives 
 

 
( )

s
3 22 2 2

0 0
4 2

z
mm RududdF G
R R u z z

φ
π

= −
+ −

. (6.C.9) 

 
When  ! = 0 , 0u z R= − ; when ! = " , 0u z R= + . Thus the double integral becomes 
 

 
( )

2 2
s

3 22 2
0 0 0 0

4 2

u z R u z R

z z
u z R u z R

m m u du dF dF G
R R u z z

φ π φ π

φ φ

φ
π

= == + = +

= − = = − =

= = −
+ −

∫ ∫ ∫ ∫  (6.C.10) 

 
We first integrate with respect to the ! -coordinate, contributing a multiplicative factor of 
 2!  because the integrand is independent of ! . The double integral is then 
 

 
( )

S
3 22 2

0 0

2
4 2

u z R

z
u z R

mm u duF G
R R u z z

π
π

= +

= −

= −
+ −

∫ . (6.C.11) 

 
The above indefinite integral is not in everyone’s toolkit, and not in many standard 
integral tables.  (For those so inclined, a MAPLE worksheet that does the integral is 
given in the link at the end of this subsection.)  One successful approach is to rewrite the 
numerator of the integrand as 
 

 ( ) ( )
2 2 2 2

2 2 2 20 0 0
0 0 0

0 0

2 1 2
2 2

R u z z R zu R u z z z R
z z

+ − − + ⎡ ⎤= = + − + −⎣ ⎦ . (6.C.12) 
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The indefinite integral, apart from the leading constants, is then 
 

 ( )
( )

2 2
0 3/ 22 2 2 2

0 0 0 0 0

1
2 2 2

du duz R
z R u z z R u z z

⎡ ⎤
⎢ ⎥+ −
⎢ ⎥+ − + −⎣ ⎦
∫ . (6.C.13) 

 
These integrals are certainly in recognizable forms, leading to 
 

 

( )

( )

0

0

2 2
02 2S

0 02 2 2
0 0 0

2 22 2
02 2S 0

0 0 02 2 2
0 0 0 0

1 2
2 2 2

1 2
2 2 2

u z R

z

u z R

z RmmF G R u z z
R z R u z z

z Rmm z RG z R R z R z
R z z R R z R z

= +

= −

⎛ ⎞−
⎜ ⎟= − + − −
⎜ ⎟+ −⎝ ⎠

⎛ ⎞⎛ ⎞−⎛ ⎞−⎜ ⎟⎜ ⎟= − + − − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟+ − +⎝ ⎠ ⎝ ⎠⎝ ⎠

(6.C.14) 

 
Now there is a subtlety. Since 2 2

0 02R z R z− +  is always positive, we have two 
special cases: 
 

 0 02 2
0 0

0 0

,
2

, .
z R z R

R z R z
R z z R
− >⎧

− + = ⎨
− <⎩

 (6.C.15) 

 
Then for 0z R> , 
 

 

( )( ) ( )( )0 0 0 0S
0 02

0 0 0

S S
2 2
0 0

1
2 2

1 4 .
2 2

z
z R z R z R z RmmF G z R z R

R z z R z R

mm mmG R G
R z z

⎛ ⎞⎛ ⎞ ⎛ ⎞+ − + −
= − + − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠⎝ ⎠

= − = −

(6.C.16) 

 
 
 
For 0z R< , 
 

 
( )( ) ( )( )0 0 0 0S

0 02
0 0 0

1
2 2

0

z
z R z R z R z RmmF G z R R z

R z z R R z
⎛ ⎞⎛ ⎞ ⎛ ⎞+ − + −

= − + − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠⎝ ⎠
=

(6.C.17) 

 
Collecting the results in Equations (6.C.16) and (6.C.17), 
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 02
0

0

,

0 , ,

S

z

mmG z R
zF

z R

⎧− >⎪
= ⎨
⎪ <⎩

 (6.C.18) 

 
consistent with the stated goal as in (6.C.1). 
 
A MAPLE worksheet that will perform the integral in Equation (6.C.11) (crude, but it 
works) may be downloaded here.  Note that in this worksheet, the two cases must be 
considered separately, with the conditions entered in separate command lines. 
 
This proves the result that the gravitational force inside the shell is zero and the 
gravitational force outside the shell is equivalent to locating all the mass of the object at 
the center of the shell.  For some other spherically symmetric distribution, the attracting 
mass could be divided into concentric spherical shells and the above result applied to 
each shell.  In general, this would involve an integral, and the limits of the integral would 
depend on whether or not the object is outside all of the layers or outside some and 
inside others. 
 
If the object were itself a spherically symmetric body, not necessarily point-like, it can be 
seen that the same result holds, with 0z  replaced with the center of mass of the body, by 
considering that we have shown that the original attracting body behaves gravitationally 
like a point mass.  From Newton’s Third Law we could reverse the argument and say that 
the object behaves like a point mass.  If the bodies overlap, as might be expected with 
gaseous spheres, this argument will not hold, but such bodies are not likely to be 
spherical. 
 
Exercise Left to the Reader: 
 
What if 0z R= ?  For gravity, this is not likely these days (but some folks are thinking 
about it), but for E&M purposes it might be of concern. 
 
Hint:  Use 0z R=  in both equations in (6.C.6), simplify as much as you can, and 
substitute into the integral in (6.C.5).  Use the half-angle formulas 
 

 

21 cos 2sin
2

sin 2sin cos
2 2

θ
θ

θ θ
θ

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6.C.19) 

and you’re essentially done. 
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Alternate Method of Integration: 
 
The integral in Equation (6.C.5), apart from multiplicative constants and the subsequent 
φ -integral, can be expressed 
 

 2

cos sin d
s
α θ

θ∫ , (6.C.20) 

 
where the θ -dependence of Sdm  is given explicitly.  What we will do is change the 
integration variable to s , and so we’ll need relations between the angles α  and θ , and 
the lengths s , 0z  and R . 
 
Consider a triangle with sides of lengths s , 0z  and R , with α  between the sides of 
lengths 0z  and s , and θ  between the sides of lengths 0z  and R .  (This is the triangle 
shown in Figure 6.A.2 above.) Using the law of cosines twice, 
 

 
2 2 2

0 0

2 2 2
0 0

2 cos

2 cos .

s R z R z

R z s s z

θ

α

= + −

= + −
 (6.C.21) 

 
Differentiating the first expression in (6.C.21), with R  and 0z  constant, 
 
 02 2 sinsds R z dθ θ= , (6.C.22) 
 
and from the second expression in (6.C.21), 
 

 ( )2 2
0

0

1 1cos
2

z R s
z s

α ⎡ ⎤= − +⎢ ⎥⎣ ⎦
. (6.C.23) 

 
We now have everything we need in terms of s .  Substituting Equations (6.C.23), 
(6.C.22) and the first expression in (6.C.21) into (6.C.20), and using the limits for the 
definite integral for 0z R> , 
 

 
( )

( )

0

0

0 0

0 0

2 2
02 2

0 00

2 2
02 2

0

cos sin 1 1 1
2

1 .
2

z R

z R

z R z R

z R z R

s dsd z R s
s z s s R z

dsz R ds
R z s

θ π

θ

α θ
θ

=
+

−
=

+ +

− −

⎡ ⎤= − +⎢ ⎥⎣ ⎦

⎡ ⎤= − +⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫
 (6.C.24) 

 
No tables should be needed for these; the result is 
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( )
( ) ( )

0
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2 2
0

0 02 2
0 0

2
0

1 1 2
2 2

2 ,

z R

z R

R z
s R z R z R

R z s R z

z

+

−

⎡ ⎤−
+ = − + + +⎡ ⎤⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦

=

 (6.C.25) 

 
the expected result when the multiplicative constants are included. 
 
For 0z R< , the lower limit is 0R z− , and the integral is 
 

 
( )

( ) ( )
0

0

2 2
0

0 0 02 2
0 0

1 1 2
2 2

0,

z R

R z

R z
s R z R z z

R z s R z

+

!

" #!
+ = ! ! + +" #$ % & '

$ %& '

=

 (6.C.26) 

 
again the expected result. 
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