
    
  

 
     

 
              
               

        

                                       
 

               
            

 
         

 
                

            
   

 
 

    
 

         
 
 
    
 

        
 

 
    

 
     
 

              
            

Central Force Motion
 
Challenge Problems
 

Problem 1: Elliptic Orbit 

A satellite of mass ms is in an elliptical orbit around a planet of mass mp which is 
located at one focus of the ellipse. The satellite has a velocity va at the distance ra when 
it is furthest from the planet. 

a) What is the magnitude of the velocity vp of the satellite when it is closest to the 
planet? Express your answer in terms of m , m , G , v , and r as needed. s	 p a a

b)	 What is the distance of nearest approach rp ? 

c)	 If the satellite were in a circular orbit of radius r0 = rp , is it’s velocity v0 greater 
than, equal to, or less than the velocity vp of the original elliptic orbit? Justify 
your answer. 

Problem 1 Solution: 

The angular momentum about the origin is constant therefore 

L ! Lp = La .	 (28.1.1) 

Because m << m , the reduced mass µ ! m and so the angular momentum condition s p	 s

becomes 

L = m r v = m r v	 (28.1.2)s p	 p s a a 

Thus 
r = r v / v .	 (28.1.3)p	 a a p 

Note: We can solve for v in terms of the constants G , m , r and v as follows. Choose p	 p a a

zero for the gravitational potential energy for the case where the satellite and planet are 



       
            
  

 

   

 
      

 

   

 
         

 

 
  

  

 
     

 

   

 
          

 
 

   

 
             

  
 

 
  

  

 
  

 
 

  
  

 

separated by an infinite distance, U (r = !)= 0 . The gravitational force is conservative, 
so the energy at closest approach is equal to the energy at the furthest distance from the 
planet, hence 

1 2 Gm m s p 1 Gm m s p . (28.1.4)! = m v 2 !m v s a2 ra 2 s p rp 

Substituting Eq. (28.1.3) into Eq. (28.1.4), yields 

Gm m Gm m v 1 2 s p 1 2 s p p . (28.1.5)m v ! = m v !s a s p r v 2 ra 2 a a 

After a little algebraic manipulation, Eq. (28.1.5) becomes 

2Gm p (v ! v ) = (v + v )(v ! v ) . (28.1.6)p a p a p ar v a a 

We can solve this equation for vp 

2Gm p ! va . (28.1.7)v = p r v a a 

b) We can use Eq. (28.1.3) to find the distance of nearest approach, 

r v 1a a = rar = . (28.1.8)p vp ! 2Gm p " 
#1$ 2 %r v & a a ' 

c) The speed of the satellite undergoing uniform circular motion can be found from the 
force equation, 

Gm m 2 
s p m v0s! 2 = ! . (28.1.9)

r0 
r0 

So the speed is 

= Gm / r0 . (28.1.10)v0 p 



              
       

 

 

  

  

 
    

 
         

 

 
  

  

 
 

               
          

 

 
  

  

 
            

 

 
  

  

  
 

    
 

         
 
     
 

             
                

         
              
       

 

Note that if we assume our original orbit was circular and set va = v0 and ra = r0 in Eq. 
(28.1.8) then the distance of closest approach becomes 

1 r = r = r (28.1.11)p 0 " 2Gm % 0 
p ! 1$ 2 ' 

# r0v0 & 

providing a second check on our algebra. 

If we substitute Gm p = r v 0 0
2 into Eq. (28.1.7), we have that 

2r v 2 

v = 0 0 ! va . (28.1.12)p r v a a 

Let’s compare our elliptic orbit to a circular orbit with rp = r0 . How does vp compare to 
v0 ? If we substitute rp = r0 into Eq. (28.1.12) we have that 

2r v 2 

v = p
p 0 ! v . (28.1.13)

r v a 
a a 

We now use the angular momentum condition that r v = r v to rewrite Eq. (28.1.13) as a a p p 

2v0
2 

v = ! v . (28.1.14)p v a 
p 

Thus 
v 2 + v va = 2v 2 . (28.1.15)p p 0 

2 2 2 2We know that va < v , so vp + v v a < 2v . Thus v < 2vp orp p p 2 0 

v0 < vp . (28.1.16) 

So the circular orbit with rp = r0 has speed v0 less than the speed vp of closest approach 
for the elliptic orbit. This is not surprising because suppose we give the satellite that is in 
a circular motion a small increase in velocity in the tangential direction, vnew = v0 + !v . 
This implies that the energy increases. The satellite will no longer travel in a circular 
orbit since for the same radius r0  , 



 
  

  

 
           

       

m v 2 Gm m 
s new s p> 2 . (28.1.17)
r0 r0 

The satellite will move away from the planet entering into an elliptical orbit. So any 
velocity vp greater than v0 will form an elliptic orbit. 
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Problem 2: Planetary Orbits 

Comet Encke was discovered in 1786 by Pierre Mechain and in 1822 Johann Encke 
determined that its period was 3.3 years. It was photographed in 1913 at the aphelion 
distance, ra = 6.1 1011 ! m , (furthest distance from the sun) by the telescope at Mt. Wilson. 
The distance of closest approach to the sun, perihelion, is rp = 5.1 1010 ! m . The universal 

!11 2 !2	 30 gravitation constant G = 6.7 "10 N # m # kg . The mass of the sun is ms = 2.0 !10 kg . 

a)	 Explain why angular momentum is conserved about the focal point and then write 
down an equation for the conservation of angular momentum between aphelion 
and perihelion. 

b)	 Explain why mechanical energy is conserved and then write down an equation for 
conservation of energy between aphelion and perihelion. 

c)	 Use conservation of energy and angular momentum to find the speeds at 
perihelion and aphelion. 

Problem 2 Solutions 

Since the only forces are gravitational and point toward the focal point 

!
!
 ! 
! focal = r focal ,comet " Fgrav = 0
 

Therefore, angular momentum is conserved. At perihelion, since vp is tangent to the orbit 

Lp = µrpvp 

At apohelion: La = µra!a 



 

 
        

 

  

 
 

 
 

 

 
               

 

 
 

 
  

 

         

         

 
 

 

 
   

 

 

La = Lp ! µrava = µrpvp ! 

rava = rpvp 

The gravitational force is conservative so mechanical energy is conserved. 

1 2 Gm1m2 1 2 Gm1m2Ea = 
2 
µva = , Ep = 

2 
µvp rp 

= 
ra 

thus 
Ea = Ep ! 

1 Gm1m2 1 Gm1m22 ! 2 != 
2 
µva ra 2 

µvp rp 

Since the mass m1 of the comet is much less than the mass of the sun m2. 

m1m2 m1m2µ = ! = m1m1 + m2 m2 

the energy conservation equation becomes: 

1 Gm1m2 1 Gm1m2 1 Gm2 1 Gm2or= = 
2 
m1va 

2 ! 
ra 2 

m1v
2 
p ! 

2 
va 
2 ! 

ra 2 
v2 
p ! 

rp rp 

ravaThe condition vp = from conservation of angular momentum can now be used in the 
rp 

energy equation. 

2
1
2


"1
2 

%
 

$ 
&
% 

Gm2 

2 ' 1 

Gm2rava 

rp 

2 !va !
=
 $#
 '&
ra rp 

Solve for va : 
!
1
 1
 1
!
ra 

rp 

$
 
&%
 

!
 $
 
va 
2 = Gm2 '
#

"

#"
 #"
 &%
2
 rp ra 



 

 
    

 

 

 
 

1/2 
" % 
$ 2Gm2 $

" 1 1 % ! ' ' 
$ # rp ra & ' va = $ 2 ' " %$ ra ' ! 1$ '$ ' # # rp & & 

" 2Gm2rp 
%
1/2 

va = $ ' 
# ra (ra + rp )& 

" %( ) 2 (6.67 ( 10!11 N ) m2 ) kg!2 )(2.0 ( 1030 kg )(5.1 ( 1010 m) 1/2
 

va = $
 ' = 5.8 ( 103 m ) s!1 

$ (6.1 ( 1011 m) (6.1 ( 1011 m + 5.1 ( 1010 m) ' # ( ) & 

The velocity at perihelion is then 

rava (6.1 ! 1011 m)
= ) (5.8 ! 103 m " s#1) = 6.9 ! 104 m " s#1vp = 

rp (5.1 ! 1010 m 



    
 

             
                   

             
            

             
 

 
 

                 
 

              
              

              
 

       

           
 
 

   
 

             
                

 
 

              
   

 

 
  

  

 

and radius r .1

Problem 3: Satellite Motion 

A spherical non-rotating planet (with no atmosphere) has mass m1 A 
projectile of mass m2 << m1 is fired from the surface of the planet at a point A with a 

speed vA  at  an angle ! = 30! with respect to the radial direction. In its subsequent 
trajectory the projectile reaches a maximum altitude at point B on the sketch. The 
distance from the center of the planet to the point B is r2 = (5 / 2)r1 . 

In this problem you will find the initial speed vA in terms ofG , m1 and r1 . 

a)	 Is there a point about which the angular momentum of the projectile is constant? 
If so, use this point to determine a relation between the speed vB of the projectile 

at the point B in terms of vA and the angle! = 30! . 

b)	 Now use conservation of mechanical energy constant to find an expression to find 
vA in terms ofG , m1 and r1 . 

Problem 3 Solutions: 

a) The only force of interest is the gravitational force, which is always directed toward 
the center of the planet; hence angular momentum about the center of the planet is a 
constant. 

At point A, the component p! 
of the satellite’s linear momentum perpendicular to the 

radius vector is 

m2 vAp! 
= m2 vA sin" = ,	 (28.3.1)

2 



               
   

 

 
  

  

 
              

               
   

 

 
  

  

 
              

    
 

 

  

  

 
               

        
 

 
  

  

 
             

         
 

Using sin30! = 1 / 2 . The magnitude of the angular momentum about the center of the 
planet is then 

r1 m2 vALA = r1 p! 
= . (28.3.2)

2 

At point B (the apogee), the velocity vector is perpendicular to the radius vector and the 
magnitude of the angular momentum is the product of the distance from the center of the 
planet and the speed, 

5LB = r2 vB = r1 vB . (28.3.3)
2 

There is no torque on the satellite, so LB = LA ; so equating the expressions in Equations 
(28.3.3) and (28.3.2) yields 

5 r m v1 2 A 

2 
r1 vB = 

2 (28.3.4)
vAv = .B 5 

b) The mechanical energy E of the satellite as a function of speed v and radius (distance 
from the center of the planet) r  is 

m1 m2E = 
1 m2 v

2 ! G . (28.3.5)
2 r 

Equating the energies at points A and B, and using rB = r2 = (5 / 2)r1 , rA = r1 and 
vB = vA / 5 from part a) (Equation (28.3.4) above), 



 

  

  

 
           

 

 
  

  

 
       

 

 
  

  

 
 

 

  

  

 
           

 

1 2 m1 m2 1 m1 m2m v ! G = m v2 ! G 
2 2 A 2 2 BrA rB 

1 2 m1 1 " vA 
% 

2 
m1vA ! G = ' 2 r1 2 #$ 5 &

! G 
5r1 / 2 

1 " 1 % m " 2% v2 1! = G 1 1! . (28.3.6)' ' 2 A #$ 25& r1 #
$ 5& 

m1vA
2 = 

5 G
4 r1 

5 G m1v = A 4 r1 

It’s worth noting that vA is less than the escape velocity 

2G m
v = 1 (28.3.7)escape r1 

of the planet, but not by much; 

vA = 
5 
! 0.79 . (28.3.8)

v 8 escape 

1 2 m1 m2 1 m1 m2m2 vA ! G = m v2 ! G 
2 rA 2 2 B rB 

1 m1 1 " vA 
% 

2 
m1vA

2 ! G = ' 2 r1 2 #$ 5 &
! G 

5r1 / 2 

1 2 " 1 % m1 " 2%
1! (28.3.9)' ' 2 

vA #$
1! 

25& 
= G

r1 #
$ 5& 

2 5 m1vA = G
4 r1 

5 G m1v = A 4 r1 

It’s worth noting that vA is less than the escape velocity 



 
  

  

 
       

 

 
  

  

 

2G m1v = (28.3.10)escape r1
 

of the planet, but not by much; 

vA 5 
= ! 0.79 . (28.3.11)

v 8
 escape 



          
 

       

   

 

 

 
            

            
       

 
   

 
            

          
 

 
 

              
         

 
          

          
 

Problem 4: Inverse Square Central Force: Lowest Energy Solution 

The effective potential energy for an inverse-square restoring central force 
! Gm m ˆF1,2 = ! 1

2 
2 r is given by 

r 

L2 Gm m ! 1 2U = effective 22µr r 

Make a graph of the effective potential energy U ( ) r as a function of the relative effective 

separation r . Find the radius and the energy for the motion with the lowest energy. What 
type of motion does this correspond to? 

Problem 4 Solution: 

For plotting purposes, the horizontal scale is the ratio r / r0 and the vertical scale is in 
units of U /U ( ) r , as found in the second part of the problem. effective effective 0 

The upper (red) curve is proportional to 1/ r 2 and the lower (blue) curve is proportional 
to !1/ r . The sum is the solid (green) curve in between. 

To find the minimum energy, differentiate the effective potential U ( ) r with respect effective 

to the radius r and set the derivative equal to zero at r0 , 



  

 
      

 

  

 
             

L2 1 Gm m 1	 2 = 0! + 
µ r3 r 2 0 0 

L2 r = .0 µGm m 1	 2 

The energy at this minimum value is 

L2 µ Gm m 
2 µ Gm m ! 1 2 "	 1 2U ( ) r = # Gm m effective 0 $ 2 % 1 2 22	µ & L ' L 

µ (Gm m )2 = # 1 2 . 
2L2 

The radius of this orbit does not change; the orbit is a circle. 



  
 

                  
      

 
        

     
 

            
 

           
 

   
 

              
 

  

 
    

 

  

 
              

            
                 

          
 

             
 

      
 

Problem 5 

A particle of mass m moves under an attractive central force of magnitude F = br3 . The 
angular momentum is equal to L . 

a) Find the effective potential energy and make sketch of effective potential energy 
as a function of r . 

b) Indicate on a sketch of the effective potential the total energy for circular motion. 

c) The radius of the particle’s orbit varies between r0 and 2r0 . Find r0 . 

Problem 5 Solutions: 

a) The potential energy is, taking the zero of potential energy to be at r = 0 , is 

r b r 4( ) = " ( br !3 )dr ! =U r "#0 4 

and the effective potential is 

L2 L2 b 4U ( ) r = + r + r .U ( ) = eff 2 22mr 2mr 4 

A plot is shown below, including the potential (yellow if seen in color), the term L2 / 2m 
(green) and the effective potential (blue). The minimum effective potential energy is the 
horizontal line (red). The horizontal scale is in units of the radius of the circular orbit and 
the vertical scale is in units of the minimum effective potential. 

b) See the solution to part (a) above and the plot to the left below. 



                 
                
           

           
     

 
             

 

  

 
    

 

  

 
           

   

c) In the left plot, if we could move the red line up until it intersects the blue curve at two 
point whose value of the radius differ by a factor of 2 , those would be the respective 
values for r0 and 2r0 . A graph of this construction (done by computer, of course), 
showing the corresponding energy as the horizontal magenta is at the right above, and is 
not part of this problem. 

To do this algebraically, we find the value of such that U r = U 2( ) ( ) r . This is r0 eff 0 eff 0 

L2 b 4 L2 b 4+ r = + (2r ) . 
mr 2 4 0 m(2r )2 4 0 

0 0 

Rearranging and combining terms, and then solving for r0 , 

3 L2 1 15 4= br 08 m r 0
2 4 

6 1 L2 r = .0 10 mb 

Thus, r0 = (1/ 10 )r (not part of the problem), consistent with the auxiliary figure on circular 

the right above. 



  
 

 
         
     

 

   

 
                   

              
          
             

       
 

              
       

 
                

         
 

             
              

               
      

 
             

             

      
 
 

Problem 6: 

The effective potential corresponding to a pair of particles interacting through a central 
force is given by the expression 

L2 3Ueff ( ) r = + Cr	 (30.1)
2µr 2 

where L is the angular momentum, µ is the reduced mass and C is a constant. The total 
energy of the system is E . The relationship between Ueff (r) and E is shown in the 
figure, along with an indication of the associated maximum and minimum values of r 
and the minimum allowed energy Emin . In what follows, assume that the center of mass 
of the two particles is at rest. 

a)	 Find an expression for the radial component f (r) of the force between the two 
particles. Is the force attractive or repulsive? 

b)	 What is the radius r0 of the circular orbit allowed in this potential? Express your 
answer as some combination of L , C , and µ . 

c)	 When E has a value larger than Emin , find how rapidly the separation between 
the particles is changing, dr / dt , as the system passes through the point in the 
orbit where r = r0 . Give your answer in terms of some combination of E , Emin , 
L , C , µ and r0 . 

d)	 Does the relative motion between the particles stop when r = r max ? If not, what is 
the total kinetic energy at that point in terms of some combination of E , L , C , 
µ , r max and rmin ? 



   
 

      
 

   

 
      

 

   

 
 

       
 

              
          

            
  

 

   

 
      

 

   

 
      

 

   

 
  

 
         

 

Problem 6 Solutions: 

a) The effective potential is given by 

L2 U ( ) r = U r ,+ ( ) (28.6.2)eff 22µr 

and f ( ) = !dU r / dr for a central force, and so 

d d 3 2f ( ) r = ! U ( ) r = ! Cr = !3Cr . (28.6.3)
dr dr 

From the figure, 0 , so f r < 0 , a restoring force. C > ( ) 

b) The circular orbit will correspond to the minimum effective potential; at this radius the 
kinetic energy will have no contribution from any radial motion. This minimum effective 
potential, and hence the radius of the circular orbit, is found from basic calculus 
and algebra, 

! d " L2 2Ueff ( ) r % = # 3 0+ 3Cr $ dr ' µr& r = r 00 (28.6.4) 
5 L ( L )

1/ 5 2 2 

r = , r = *00 3µC 3µC + 
. 

, -

c) Recall that the kinetic energy is 

2L 1 ! dr "
2 

K = 2 + µ $ . (28.6.5)#2µr 2 % dt & 

The difference E ! E is then found by evaluating U  at r = r ,min eff 0 

! 
2
"1 dr E # Emin = µ $ % , (28.6.6)$ %2 dt & r=r0 ' 

( )( )min 2 / E Eµ ! .or dr / dt =
 

d) No; dr / dt = 0 , but the kinetic energy, from Equation (28.6.5), is
 



   L2
 . (28.6.7)K = min 2
2µrmax 



         
 
           

            
          

             
              
             

           
             

            
          

 
               

             
        

              
          

              

       
 

          
 

       
 

               
 

                  
 

 
                  

     
 

                   
      

 
          

 
              

 

Problem 7: Determining the Mass of a Neutron Star 

A binary system known as 4U0900-40 consists of a “neutron star” and a normal 
“optical star.” You are given two graphs of actual data obtained from observations of this 
system. The top graph shows the time delays (in seconds) of X-ray pulses detected from 
the neutron star as a function of time (in days) throughout its orbit. These delays indicate 
the time of flight for an X-ray pulse (traveling with the speed of light) to cross the orbit of 
the binary in its trip to the earth. (Ignore the heavy dots scattered about the “ x ”-axis.) 

The bottom graph displays the velocity component of the optical star toward (or 
away from) the Earth as a function of its orbital phase. The velocities (in km per second) 
are determined from Doppler shifts in its spectral lines. Time on this plot is given in units 
of orbital phase, where the time between phases 0.0 and 1.0 corresponds to one orbital 
period. 

Assume that the orbit of 4U0900-40 is circular and that we are viewing the system 
edge on, i.e., the Earth lies in the plane of the binary orbit. In each graph, the solid curve 
is a computed fit to the individual data points. 

You are to find from the data the orbital period, orbital radii and the masses of the 
neutron star and the optical star. You need only give answers to two significant figures. 

For this problem, use c = 3.0 ! 108 m " s#1 for the speed of light and 
G = 6.7 ! 10"11 N # m2 # kg"2 for the Universal Gravitation Constant. 

Suggested procedure (you will need a ruler for the first three parts): 

a. Determine the orbital period, T , in days. 

b. Estimate the velocity, v0 of the optical star in its orbit around the center of mass. 

c. Use T and v0 to find the radius of the orbit of the optical star, a0 , around the center of 
mass. 

d. Estimate the size of the orbit, aN , of the neutron star around the center of mass. First 
express your answer in light ! seconds, then in meters. 

e. Find the ratio of the mass of the neutron star, mN , to the mass of the optical star, mO . 
[Hint: Recall that in any binary m1 r1 = m2 r2 .] 

f. Use Kepler’s law to find the total mass of the binary system. 

g. Find mN and mO ; express your answers in units of the mass of the Sun ( 2 ! 1030 kg ). 



 



   
 

          
                

 
              

          
            
         

    
            

        

 

            
            
            

      
           

 

 

           
          

   
 

 

  

 

 

         

      
 

 

           
                 

      

Problem 7 Solutions: 

a.	 Between the first and third zero-crossings on the upper graph, the distance is 8.98 
cm. The scale of the time axis is 1.00 cm to 1 day, so the orbital period, P, is 8.98 
days. 

b.	 The Doppler shift velocities range from a maximum of 16.0 km!s-1 to a minimum 
of -30.8 km!s-1. (The velocities are not symmetric around zero because the binary 
system as a whole is moving relative to the solar system.) The optical star’s 
orbital velocity is just half the difference between the maximum and minimum 
Doppler velocities, or r0=23.4 km!s-1. 

c.	 In one period P, moving at velocity v0, the optical star travels a distance
 
v0 p = 2!a0 . So the orbital radius, a0 is just
 

a0 = 
1 (9.98)(24)(60)(60 $% 23.4km & s '1 ) = 2.89 ( 106 km #2!

"	 )s ( 
d.	 The smallest time delay is -117 seconds, while the largest is 111 seconds. The 

radius of the neutron star’s orbit (in light seconds) is half the difference between 
these, or aN = 114lt ! sec. Since the speed of light is 2.998 x 1010  cm!s-1, the 
distance aN is equal to 3.42 x 1012cm. 

e.	 The ratio MN/M0 is just equal to a0/aN. That is 

MN 2.89 ! 1011 cm 
= = 8.45 ! 10"2 

M 0 3.42 ! 1012 cm 

f. The semimajor axis of the absolute orbit is a = aN + a0 = 3.71 ! 1012 cm and the 
orbital period is 7.76 x 105s. Inserting these values into Newton’s form of 
Kepler’s Third Law. 

p2 a3 

= 
(2! )2 G M N + M 0 )( 

we have, 

(3.71 " 1012 )3
 

MN + M 0 + 4! 2 

)
= 5.02 " 1034 g


(7.76 " 105 )2 (6.67 " 10#8
 

! MN $	 MNg.	 We use the fa(28.7.1)ct that M 0 1 + 
" M 0 %&	 M 0 

and = M 0 + MN , and both # 

(M 0 + MN ) are known. Then we have 

5.02 ! 1034 gM 0 = = 4.63 ! 1034 g
1 + 8.45 ! 10"2 

The remaining mass in the mass of the neutron star, MN = 3.9 ! 1033 g . 
The mass of the sun is 1.99 x 1033 g, so the masses of the optical star and its 

neutron star companion are 23.3 and 2.0 solar masses, respectively. 
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