
Module 25: Angular Momentum and Torque for a System of Particles 
 
25.1 Angular Momentum of a System of Particles 
 
We now calculate the angular momentum about the point S  associated with a system of 
N  point particles. Label each individual particle by the index i , 1,2,i N= … . Let the thi  
particle have mass im  and velocity iv

! . The momentum of an individual particle is then 

i i im=p v! ! . Let ,S ir
!  be the vector from the point S  to the thi  particle, and let i!  be the 

angle between the vectors ,S ir
!  and ip

!  (Figure 25.1). 
 

 
 

Figure 25.1 A system of particles with a moving center of mass. 
 
The angular momentum ,S iL

!
 of the thi  particle is then 

 
 , ,S i S i i= !L r p

! ! ! . (25.1.1) 
 
The total angular momentum for the system of particles is the vector sum of the 
individual angular momenta,  
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The change in the angular momentum of the system of particles about a point S is given 
by 
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Because the velocity of the ith particle is 

    
!vS ,i = d!rS ,i / dt , the first term in the parentheses 

vanishes (the cross product of a vector with itself is zero because they are parallel to each 
other) 
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Recall that     

!
Fi = d!pi / dt , therefore Eq. Error! Reference source not found. becomes  
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Because  
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Eq. (25.1.5) becomes 
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Therefore the total torque about the point S  is equal to the time derivative of the total 
angular momentum about the point. 
 
25.1.1 Example  
 
Two identical particles of mass m  move in a circle of radius r , 180!  out of phase at an 
angular speed !  about the z axis in a plane parallel to but a distance h  above the x-y 
plane.  

 
Find the magnitude and the direction of the angular momentum 0L

!
 relative to the origin. 

 
Solution: The angular momentum about the origin is the sum of the contributions from 
each object. Since they have the same mass, the angular momentum vectors are shown in 
the figure below.  



 
 

The components that lie in the x-y plane cancel leaving only a non-zero z-component so 
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If you explicitly calculate the cross product in polar coordinates you must be careful 
because the units vectors r̂  and  !̂  at the position of objects 1 and 2 are different. If we 
set 0,1 1

ˆˆr h= +r r k!
 and     

!v1 = r! "̂1  such that   ̂r1 ! "̂1 = k̂  and similarly set 0,2 2
ˆˆr h= +r r k!

 

and     
!v2 = r! "̂2  such that   ̂r2 ! "̂2 = k̂  then 1 2ˆ ˆ= !r r  and  !̂1 = "!̂2 . With this in mind we 

can compute 
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The important point about this example is that the two objects are symmetrically 
distributed with respect to the z-axis (opposite sides of the circular orbit). Therefore the 
angular momentum about any point S  along the z-axis has the same value 2 ˆ2S mr !=L k

!
 

that is constant in magnitude and points in the +z-direction for the motion shown in the 
figure above. 
 
Example 25.1.2: Angular Momentum of a System of Particles about Different Points 
 
Consider a system of N particles, and two points  A  and  B .  
 



 
 
The angular momentum of the ith particle about the point  A  is given by 
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So the angular momentum of the system of particles about the point  A  is given by the 
sum 
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The angular momentum about the point  B  can be calculated in a similar way and is given  
by 
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From the above figure, the vectors  
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We can substitute Eq. (1.13) into Eq. (1.11) yielding 
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The first term in Eq. (1.14) is the angular momentum about the point  B . The vector    
!rA,B  

is a constant and so can be pulled out of the sum in the second term, and Eq. (1.14) 
becomes 
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The sum in the second term is the momentum of the system 
 



 
 

!psys = mi
!v i

i=1

N

! . (1.16) 

Therefore the angular momentum about the points A  and B  are related by 
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Thus if the momentum of the system is zero, the angular momentum is the same about 
any point. In particular, the momentum of a system of particles is zero by definition in the 
center of mass reference frame. Hence the angular momentum is the same about any 
point in the center of mass reference frame.  

 
25.2 Angular Momentum and Torque for Fixed Axis of Rotation 
 
We have shown that, for fixed axis rotation, the component of torque that causes the 
angular velocity to change is the rotational analog of Newton’s Second Law, 
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We shall now see that this is a special case of the more general result 
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Consider a rigid body rotating about a fixed axis passing through the point S .and take 
the fixed axis of rotation to be the z -axis. 
 
Recall that all the points in the rigid body rotate about the z -axis with the same angular 
velocity     

!
! " (d# / dt)k̂ " ! k̂ . In a similar fashion, all points in the rigid body have the 

same angular acceleration,     
!
! " (d 2# / dt2 ) k̂ " ! k̂ 2 2/d dt! "= . The velocity vector    

!v i  
for any point in the rigid body is then given by 
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The angular momentum is a vector, and will have a component along the direction of the 
fixed z -axis. Let the point S  lie somewhere along the z -axis. As before, the body is 
divided into individual elements; we calculate the contribution of each element to the 
angular momentum, and then sum over all the elements. The summation will become an 
integral for a continuous body. 
 



Each individual element has a mass im!  and is moving in a circle of radius , ,S ir !  about 
the axis of rotation. Let ,S ir

!  be the vector from the point S  to the element. The velocity 
of the element, iv

! , is tangent to this circle (Figure 25.2).  
 

 
 

Figure 25.2 Geometry of instantaneous rotation. 
 
The angular momentum of the thi  element about the point S  is given by 
 
 , , ,S i S i i S i i im= ! = !"L r p r v

! ! ! ! ! . (25.2.4) 
 
Let the point iO  denote the center of the circular orbit of the element.  Define a vector 

, , ,iO i S i!=r r! !  from the point iO  to the element. Let , , ,iS O S i=r r !
" "  denote the vector from the 

point S  to the point iO . Note that , , ,iS O S i=r r !
" "  is directed along the z-axis, as in Figure 

25.2. The three vectors are related by 
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The angular momentum about S  is then expressed as 
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In the last expression in Equation (25.2.6), the first term has a direction that is 
perpendicular to the z -axis; the direction of a cross product of two vectors is always 
perpendicular to the direction of either vector. Since , ,S ir !

"  is in the z -direction, the first in 
the last expression in Equation (25.2.6) has no component along the z -axis. Therefore 



the vector component along the z -axis of the angular momentum about the point S , 

    
(
!
LS , i )z ! (LS , i )z , arises entirely from the second term, 

 
 , , ,S i S i i im!= " #L r v

! ! ! . (25.2.7) 
 
The vectors , , , iS i S O! =r r! !  and iv

!  are perpendicular, as shown in Figure 25.3.  
 

 
 

Figure 25.3 The z -component of angular momentum. 
 
Therefore the z -component of the angular momentum about S  is just the product of the 
radius of the circle, , ,S ir ! , and the component i im v!  of the momentum, 
 
   

(LS , i )z = rS ,! , i "mi vi . (25.2.8) 
 
For a rigid body, all elements have the same angular velocity, d dt! "# , and the 
tangential velocity is 
 
 , ,i S iv r !"= . (25.2.9) 
 
The expression in Equation (25.2.8) for the z -component of the momentum about S  is  
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The z -component of the total angular momentum about S  is the summation over all the 
elements, 
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For a continuous mass distribution the summation becomes an integral over the body, 
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where r!  is the distance form the fixed z -axis to the infinitesimal element of mass dm . 
 
The moment of inertia of a rigid body about a fixed z -axis passing through a point S  is 
given by an integral over the body 
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Thus the z -component of the total angular momentum about S  for a fixed axis that 
passes through S  in the z -direction is proportional to the angular velocity, ! ,  
 
   (LS

total )z = IS ! . (25.2.14) 
 
For fixed-axis rotation, our result that torque about a point is equal to the time derivative 
of the angular momentum about that point, 
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can now be resolved in the z -direction, 
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in agreement with our earlier result  that the z -component of torque about the point S  is 
equal to the product of moment of inertia about SI , and the magnitude  !  of the angular 
acceleration. 
 
25.2.1 Example  
 
A circular ring of radius r , and mass m  out of phase at an angular speed !  about the z 
axis in a plane parallel to but a distance h  above the x-y plane.  

 
Find the magnitude and the direction of the angular momentum 0L

!
 relative to the origin. 

 
Solution: Use the same symmetry argument as we did in Example 25.1.1 . The ring can 
be thought of as made up of pairs of point like objects on opposite sides of the ring each 



of mass  !m . Each pair has a non-zero z-component of the angular momentum taken 
about any point along the z-axis, 
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all the pairs gives 
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Recall that the moment of inertia of a ring is given by 
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So for the symmetric ring the angular momentum points in the direction of the angular 
velocity and is equal to 
     

!
LS = IS!k̂  (25.2.19) 

 
 
25.3 Conservation of Angular Momentum about a Point 
 
Consider a system of particles. We begin with our result that we derived in Section 25.1 
that the total torque about a point  S  is equal to the time derivative of the angular 
momentum about that point  S : 
 

 
    

!
!SS

total =
d
!
LS

sys

dt
. (25.3.1) 

 
The total torque about the point  S  is the sum of the external torques and the internal 
torques 
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The total external torque about the point  S is the sum of the torques due to the net 
external force acting on each element 
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The total internal torque arise from the torques due to the internal forces acting between 
pairs of elements 

 

    

!
!SS

int =
!
!S , jS

int

j=1

N

" =
!
!S ,i, j

int

i=1
j# i

i=N

"
j=1

i=N

" =
!rS ,i $

!
Fi, j

j=1
j# i

i=N

"
i=1

i=N

" . (25.3.4) 

 



We know by Newton’s Third Law that the internal forces cancel in pairs, 
    
!
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hence the sum of the internal forces is zero 
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Does the same statement hold about pairs of internal torques? Consider the sum of 
internal torques arising from the interaction between the ith and jth particles 
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By the Third Law this sum becomes 
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In the Figure 25.4,  the vector 

    
!rS ,i !

!rS , j points from the jth element to the ith element. 

 
Figure 25.4 Special case when the internal force is along the line connecting to the ith 

and jth particles 
 
If the internal forces between a pair of particles are directed along the line joining the two 
particles then the torque due to the internal forces cancel in pairs. 
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This is a stronger version of Newton’s Third Law than we have so far since we have 
added the additional requirement regarding the direction of all the internal forces between 
pairs of particles. With this assumption, the total torque is just due to the external forces 
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However, so far no isolated system has been encountered such that the angular 
momentum is not constant. 

 



Principle of Conservation of Angular Momentum 
 
If the external torque acting on a system is zero, then the angular momentum of 
the system is constant. So for any change of state of the system the change in 
angular momentum is zero  
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Equivalently the angular momentum is constant 
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So far no isolated system has been encountered such that the angular momentum is not 
constant. 
 
25.3.1 Example Collision 
 
An object of mass m  and speed 0v   strikes a rigid uniform rod of length l  and mass rm
that is hanging by a frictionless pivot from the ceiling. Immediately after striking the rod, 
the object continues forward but its speed decreases to 0v /2. The moment of inertia of the 
rod about its center of mass is 2(1/12)cm rI m l= . Gravity acts with acceleration g   
downward. 

 
a) For what value of 0v  will the rod just touch the ceiling on its first swing? You may 
express your answer in terms of g , rm , m , and l . 
 
b) For what ratio /rm m  will the collision be elastic? 
 
Solution: 
 
We begin by identifying our system which consists of the object and the uniform rod. We 
identify as well three states: 
 
State 1: Immediately before the collision 
State 2: Immediately after the collision. 
State 3: The instant the rod touches the ceiling when the final angular speed is zero. 



 
and two state changes: 
 
State 1 !  State 2 
State 2 !  State 3 
 
We would like to know if any of our fundamental quantities, momentum, energy, angular 
momentum are constant during these state changes.  
 
We start with State 1 !  State 2. The pivot force holding the rod to the ceiling is an 
external force acting at the pivot point  S . There is also the gravitational force acting on 
at the center of mass of the rod and on the object. There are also internal forces due to the 
collision of the rod and the object at point  A .  
 

 
The external force means that momentum is not constant. However the external force is 
fixed and so does no work. However, we do not know whether the collision is elastic or 
not so we cannot assume that mechanical energy is constant. If we choose the pivot point 
 S  as the point in which to calculate torque, then the torque about the pivot is 
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The external pivot force does not contribute any torque because 
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forces between the rod and the object are equal in magnitude and opposite in direction, 
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Thus the angular momentum about the pivot point is constant, 
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In order to calculate the angular momentum we draw a diagram showing the momentum 
of the object and the angular speed of the rod in the figure below. 
 

 
 
The angular momentum about  S  immediately before the collision is  
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The angular momentum about  S  immediately after the collision is  
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Therefore the condition that the angular momentum about  S  is constant during the 
collision becomes 
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We can solve for the angular speed immediately after the collision 
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By the parallel axis theorem the moment of inertial of a uniform rod about the pivot point 
is  
 

  IS = m(l / 2)2 + Icm = (1 / 4)mrl
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Therefore the angular speed immediately after the collision is 
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For the transition State 2 !  State 3, we know that the gravitational force is conservative 
and the pivot force does no work so mechanical energy is constant.  
 

  
Emech,2 = Emech,3  

 
We draw an energy diagram with a choice of zero for the potential energy at the center of 
mass. We only show the rod because the object undergoes no energy transformation 
during the transition State 2 !  State 3. 
 

 
 
The mechanical energy immediately after the collision is 
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Using our results for the moment of inertia  IS  and  !2 , we have that 
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The mechanical energy when the rod just reaches the ceiling when the final angular speed 
is zero is then 
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Then the condition that the mechanical energy is constant becomes 
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We can now solve this equation for the initial speed of the object 
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We now return to the transition State 1 !  State 2 and determine the constraint on the 
mass ratio in order for the collision to be elastic. The mechanical energy before the 
collision is 
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If we impose the condition that the collision is elastic then 
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Using our result above we have that 
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This simplifies to 
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Hence we can solve for the mass ratio necessary to insure that the collision is elastic if 
the final speed of the object is half it’s initial speed 
 

  

mr
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Notice that the result in independent of the initial speed of the object. 
 
25.4 External Impulse and Change in Angular Momentum 
 
Define the external impulse about a point  S applied as the integral of the external torque 
about  S  
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Then the external impulse about  S  is equal to the change in angular momentum 
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Notice that this is the rotation analog to our statement about impulse and momentum, 
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25.4.1 Example: A steel washer is mounted on the shaft of a small motor. The moment 
of inertia of the motor and washer is   I0 . The washer is set into motion. When it reaches 
an initial angular speed  !0 , at   t = 0 , the power to the motor is shut off, and the washer 
slows down until it reaches an angular speed of  ! a  at time  ta . At that instant, a second 
steel washer with a moment of inertia  Iw  is dropped on top of the first washer. Assume 
that the second washer is only in contact with the first washer.  The collision takes place 
over a time   !tint = tb " ta . Assume the frictional torque on the axle is independent of 
speed, and remains the same when the second washer is dropped. The two washers 
continue to slow down during the time interval   

!t2 = t f " tb  until they stop at time  
t = t f .  

 
a) What is the angular acceleration while the washer and motor are slowing down 

during the interval   !t1 = ta ? 
 
b) Suppose the collision is nearly instantaneous,    !tint = (tb " ta ) ! 0 . What is the 

angular speed  !b  of the two washers immediately after the collision is finished 
(when the washers rotate together)?   

 
Now suppose the collision is not instantaneous but that the frictional torque is 
independent of the speed of the rotor.  
 

c) What is the angular impulse during the collision? 
 
d) What is the angular velocity  !b  of the two washers immediately after the 

collision is finished (when the washers rotate together)?   
 
e) What is the angular deceleration  !2  after the collision?  

 
Solution: 
 
a) The angular acceleration of the motor and washer from the instant when the power is 
shut off until the second washer was dropped is given by 
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b) If the collision is nearly instantaneous, then there is no angular impulse and therefore 
the  z -component of the angular momentum about the rotation axis of the motor remains 
constant 
 
   

0 = !Lz = Lf ,z " L0,z = (I0 + Iw )#b " I0# a . (25.4.5) 
 
We can solve Eq. (25.4.5) for the angular speed  !b  of the two washers immediately after 
the collision is finished 
 

 
  
!b =

I0

I0 + Iw

! a . (25.4.6) 

 
 
 
c) The angular acceleration found in part a) is due to the frictional torque in the motor. 
Let 

    
!
! f = "! f k̂  where  

! f  is the magnitude of the frictional torque then 
 

 
  
!" f = I0#1 =

I0 ($ a !$0 )
%t1

. (25.4.7) 

 

 
 
 
During the collision with the second washer, the frictional torque exerts an angular 
impulse (pointing along the  z -axis in the figure), 
 

 
  
Jz = ! " f dt

ta

tb
# = !" f $tint = I0 (% a !%0 )

$tint

$t1
. (25.4.8) 

 
c) The  z -component of the angular momentum about the rotation axis of the motor 
changes during the collision, 
 



   
!Lz = Lf ,z " L0,z = (I0 + Iw )#b " I0# a  (25.4.9) 

 
The change in the z-component of the angular momentum is equal to the z-component of 
the angular impulse 
 
  Jz = !Lz . (25.4.10) 
 
Thus, equating the expressions in Equations (25.4.8) and (25.4.9), 
 

 
  
I0 (! a "!0 )

#tint

#t1

$

%
&

'

(
) = (I0 + Iw )!b " (I0 )! a . (25.4.11) 

 
Solving Equation (25.4.11) for the angular velocity immediately after the collision, 
 

 
  
!b =

I0

(I0 + Iw )
(! a "!0 )

#tint

#t1

$

%
&

'

(
) +! a

$

%
&

'

(
) . (25.4.12) 

 
 
If there were no frictional torque, then the first term in the brackets would vanish, and the 
second term of Equation  would be the only contribution to the final angular speed. 
 
d) The final angular acceleration  !2  is given by 
 

 
  
!2 =

0 "#b

$t2

= "
I0

(I0 + Iw )$t2

(# a "#0 )
$tint

$t1

%

&
'

(

)
* +# a

%

&
'

(

)
* . (25.4.13) 
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