11.21.03

8.01 EXAM#3 Solutions

Problem 1: Collision (15 Points)

Two masses M and 3M collide on a horizontal frictionless surface as shown. Before the collision the mass M has a velocity V_1 in the y-direction. The mass 3M has a velocity $\frac{5}{12}V_0$ making an angle θ to the x-axis as shown. Assume $\sin\theta=3/5$ and $\cos\theta=4/5$. After the collision the mass 3M is at rest. The mass M moves along the x-axis with the velocity V_1' . Neglect gravity. Give all your answers to parts b), c), and d) in terms of M and V_0 . Be careful do not confuse your symbols.

- a) What are the x and y-components of the <u>net linear momentum</u> before the collision in terms of M, V_1 , V_0 and θ ?
- b) What is the speed V_1 of the mass M before the collision?
- c) What is the $\underline{\text{speed}}\ V_1'$ of the mass M after the collision?
- d) What is the velocity of the center-of-mass?

a)
$$P_{x}^{t,t} = 3 \frac{1}{2} V_{0} \cos \theta$$

$$= \frac$$

Name:	
ivailic.	

Problem 2: Rotational Dynamics (15 points)

A spool of wire of mass M and radius R is unwound along a horizontal surface under a constant force \vec{F} . Assume the spool is a uniform solid cylinder that does not slip. The coefficient of static friction is μ_s . Assume that the radius of the spool does not decrease significantly while the spool is rolling. Give all you answers in terms of F, M, R, μ_s , g and L.

- a) State the moment of inertia, I, of the cylinder about its central axis.
- b) What is the <u>force of friction</u>, \vec{f} (magnitude AND direction) acting on the spool? Show the direction of f on the diagram.
- c) What is the acceleration of the center-of-mass?
- d) What is the angular acceleration?
- e) What is the total kinetic energy of the spool when it has rolled through a distance L?

$$I = \frac{1}{2} M R^2$$

$$T = I \times \text{about } A$$

$$T = 2FR \qquad I = \frac{1}{2}MR^2 + MR^2 = \frac{3}{2}MR^2$$

$$A = \frac{1}{I} = \frac{4}{3}\frac{F}{MR} \qquad \alpha = AR = \frac{4}{3}\frac{F}{MR}$$

- b) Note $a > \frac{f}{m}$, so f and F point to the same direction. $f + F = Ma = \frac{4}{3}F \Rightarrow |f = \frac{1}{3}F|$
- e) When the center moves a distance L, B points moves a distance 2L (or the string is pulled by a distance 2L). So K=2LF

Name:	
Maille.	

Problem 3: Rotational Collision (15 points)

A uniform cylindrical shell (hoop) sits on one of its flat sides on a frictionless surface. The hoop has mass M, radius R and height H. A bullet of mass μ moving horizontally with velocity V_0 strikes the hoop with impact parameter R at mid-height (H/2 from the surface). After the collision the bullet continues with velocity $V_0/2$ in its original direction. Ignore any hole the bullet creates. Give all your answers in terms of M, R, H, V_0 , and μ .

- a) What was the <u>angular momentum</u>, \vec{L} , of the system about the center of the hoop before the collision?
- b) What is the linear velocity, \vec{V} , of the center of the hoop after the collision?
- c) What is the angular velocity, $\vec{\omega}$, of the hoop after the collision?

a)
$$L = MV_0R$$
 pointing up (out of paper)

relative to A.

b) $V_x = -\frac{M/2}{M}V_0$
 $V_y = 0$

Top View

c)
$$I \omega + M \frac{\sqrt{0}}{2} R = M \sqrt{0} R$$

$$\omega = \frac{M \sqrt{0} R}{2 I} = \frac{M \sqrt{0}}{2 M R}$$

Name: _____

Problem 4: Multiple Choice (15 Points)

a)

The only force acting on a 2.0-kg object moving along the x axis is shown. If the velocity v_x is -2.0 m/s at t=0, what is the velocity at t=4.0 s?

a.
$$-2.0 \text{ m/s}$$

b.
$$-4.0 \, \text{m/s}$$

e.
$$+5.0 \text{ m/s}$$

$$P(t=4) = -4 - 2 = -6$$

$$U = \frac{P}{m} = -3 \frac{m}{s}$$

b)

A car of mass m_1 traveling at velocity v passes a car of mass m_2 parked at the side of the road. The momentum of the system of two cars is

$$m_1v$$
.

c.
$$(m_1 - m_2)v$$
.

d.
$$\frac{m_1 v}{m_1 + m_2}$$

e.
$$(m_1 + m_2)v$$
.

Two forces of magnitude 50 N, as shown in the figure below, act on a cylinder of radius 4 m and mass 6.25 kg. The cylinder, which is initially at rest, sits on a frictionless surface. After 1 second, the velocity and angular velocity of the cylinder in m/s and rad/s are respectively

- $v = 0; \omega = 0.$
- $v = 0; \omega = 4.$
- v = 0; $\omega = 8$.
- v = 8; $\omega = 8$.
- v = 16; $\omega = 8$.

- $I = \pm MR^2 = 50$
- $T = 50 \times 4 = 200$ d = 4 W = 4/s

d)

Five objects of mass m move at velocity v at a distance r from an axis of rotation perpendicular to the page through point A, as shown below. The one that has zero angular momentum about that axis is

e)

A square of side $\frac{L}{2}$ is removed from one corner of a square sandwich that has sides of length L. The center of mass of the remainder of the sandwich moves from C to C'. The displacement of the x coordinate of the center of mass (from C to C') is

- (a.) $\frac{1}{12}L$
- **b.** $\frac{\sqrt{2}}{12}L$
- c. $\frac{1}{6}L$
- **d.** $\frac{1}{8}L$.
- e. $\frac{\sqrt{2}}{8}L$

$$3 \cdot \times = 1 \cdot \frac{1}{4}$$

$$\Rightarrow$$
 $\times = \frac{L}{12}$