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Problem 9.1 
(a) John does no work on the computer monitor. John does exert a force on the 

computer monitor, but the monitor does not move; hence there is no work done by John 
on the monitor. (To understand why John becomes exhausted if he does no work, please 
see the last paragraph on page 162.) 

(b) When the fly flies in the jar with constant speed the net force on the fly must be 
zero. Thus the air pushes upwards on the fly, and the upward force is the weight of the 
fly. According to Newton’s third law, the fly must therefore push on the air with the same 
force. Since the air is enclosed in the jar, this downward force is felt by the scale. Thus 
the scale reading remains the same. 

There is a transient period while the fly takes off (it pushes against the bottom of 
the jar) as it is being accelerated. During that period the scale will read a higher value 
than before. 

(c) When the jar is open, the situation is very different. Imagine that the fly is sitting 
on a tray, and the tray is on the scale, and then it starts to fly. Clearly the scale will read 
a lower value as the fly is ”gone”. 

In an open jar, with the fly flying in the jar, the scale will read a lower value. The 
fly is still pushing down on the air with a force equal to its own weight, but now this force 
is not 100% transferred to the bottom of the jar. There is “leakage” to the outside world 
(outside the jar). 

(d) We can fire the rocket with such an impulse as to bring our speed to zero. Then 
earth’s gravity will bring us back without any further effort. If our speed in the orbit is v 
then the impulse required to come to a temporary stop is I = mv; thus a smaller orbital 
speed requires a smaller impulse which requires less fuel. Our speed is largest when we 
are closest to earth, and our speed is smallest when we are farthest from earth; therefore 
we should fire our rockets when we are farthest from earth. 

(e) Let MR be the mass of the rock, MB be the mass of the boat and anything else in 
it, ρ

W be the density of water, and ρ
R be the density of the rock. With the rock in the 

boat, the amount of water displaced is 

MB + MR MB MR
V1 = = + 

ρ ρ ρ
W W W 
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With the rock at the bottom of the pool, the amount of water displaced is


MB MR
V2 = + 

ρ ρ
W R 

Since the rock sinks, we know that ρ
R > ρ

W ; hence V1 > V2 and the water level will go 
down. 

(f) Let M be the mass of ice and ρ
W be the density of water. With the ice initially 

floating, the amount of water displaced is 

M 
V1 = 

ρ
W 

The ice melts, and the corresponding volume of water is 

M 
V2 = 

ρ
W 

Thus V1 = V2 and the water level will remain the same. 

Problem 9.2 (Ohanian, page 372, problem 16) 

Let m = 80 kg, l = 0.6 m, and h = 1.2 m. We only need to concern ourselves with 
a cross-section of the box as shown in Figure 14.34 on page 372. 

(a) Now imagine a line connecting the edge of the box which remains in contact with 
the floor with the center of mass. The angle between this line and the bottom of the box 
is given by 

h 
� � 

h h 
tan φ = 2 = =⇒ φ = tan−1 ≈ 63.4◦ 

l l l 
2 

The angle of this line relative to the floor is θ + φ. The length of this line is given by 

�
� �2 � �2 

� l h 
L = + ≈ 0.671 m 

2 2 

Therefore the height of the center of mass is given by 

H = L sin(θ + φ) ≈ 0.671 · sin(θ + 63.4◦) 

Therefore the potential energy is given by 

U = mgH ≈ 5.26 × 102 · sin(θ + 63.4◦) 
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where the units of U are J and θ must be measured in degrees. The height of the center 
of mass is measured relative to the ground. When θ = 0 the center of mass is at a height 
h and U 6 0. = 
2 

(b) The critical angle θC occurs when 

θC + φ = 90◦ =⇒ θC = 26.6◦ 

(U is an increasing function of θ for θ < θC and a decreasing function of θ for θ > θC .) 

(c) For a conservative force the work is the change in energy. 

W = U(θC) − U(0) = 5.26 × 102 · sin(90◦) − 5.26 × 102 · sin(63.4◦) ≈ 55.7 J 

Problem 9.3 (Ohanian, page 372, problem 18) 

Let w be the width of each book. We will use the scheme illustrated by Figure 14.36 
on page 372. You first place the top book. Then you place the next book so that its right 
most edge is directly under the center of mass of the first book. Then you continue adding 
books at the bottom in this fashion: place each book so that its right most edge is directly 
under the center of mass for all the books above. We can explicitly work out the first five 
books in the sequence; the pattern will be clear. Let xi denote the right most edge of the 
ith book, and choose x1 = 0. Then the shift between each book is Δi = xi+1 − xi and the 

wcenter of the ith book is given by xi + 
2 . Then 

x1 = 0 

1 w 1 1 
x2 = x1 + = w =⇒ Δ2 = x2 − x1 = w 

1 2 2 2 

1 w w 3 1 
x3 = x1 + + x2 + = w =⇒ Δ2 = x3 − x2 = w 

2 2 2 4 4 

1 w w w 11 1 
x4 = x1 + + x2 + + x3 + = w =⇒ Δ3 = x4 − x3 = w 

3 2 2 2 12 6 

1 w w w w 25 1 
x5 = x1 + + x2 + + x3 + + x4 + = w =⇒ Δ4 = x5 − x4 = w 

4 2 2 2 2 24 8 

The total protrusion is 

x5 − x1 = x5 − x4 + x4 − x3 + x3 − x2 + x2 − x1 = Δ4 + Δ3 + Δ2 + Δ1 ≈ 1.04 · w 
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¿From the above it seems clear that the general rule is


1 1 w 
Δi = w = · 

2i i 2 

For an infinite number of books the total protrusion is 

i=∞ i=∞ i=∞ 
� � 1 w w � 1 

Δi = · = · 
i 2 2 i

i=1 i=1 i=1 

The second piece above is the sum of the harmonic series, 1 
i
, 

i=∞ 
� 1 

→ ∞ 
i

i=1 

which is known to diverge; therefore the maximum protrusion for an infinite number of 
books is an infinite distance. 

Problem 9.4 (Ohanian, page 377, problem 50) 

From Table 14.1 on page 366 we know that the Young’s modulus for bone is Y = 
3.2 × 1010 N/m2 . From Equation (27) on page 366 we know that 

ΔL 1 F 
= 

L Y A 

We know that L = 38 cm = 38 × 10−2 m, A = 10 cm2 = 10 × 10−4 m2, and F = 1
2 68 · g. 

(Each leg supports 
2
1 of the total weight.) This gives 

1 F 
ΔL = · L ≈ 4.0 × 10−6 m 

Y A 

Problem 9.5 (Ohanian, page 408, problem 31) 

First we will calculate the initial moment of inertia I1 and the initial angular fre­
quency of the torsional pendulum ω1. We will make the approximation that the balance 
wheel is a thin hoop. The moment of inertia for a thin hoop is given in Table 12.1 on 
page 309 as 

I1 = MR2 = 1.5000 × 10−8 kg · m 2 

where M = 0.6 g = 0.6 × 10−3 kg and R = 
2
1 · 1.0 cm = 5.0 × 10−3 m. The period of 

the torsional pendulum is supposed to coincide with one second, but the watch makes 
1.2 · 60 = 72 more periods per day than it should. The frequency is then given by 

24 · 60 · 60 + 72 
ν1 = ≈ 1 + 8.3333 × 10−4 Hz 

24 · 60 · 60 
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and


ω1 = 2πν1 = 2π + 5.2359 × 10−3 radian/s


We can use I1 and ω1 to calculate κ from Equation (75) on page 397.


κ = I1ω1
2 ≈ 5.9316 × 10−7 m · N/radian 

We want to adjust a screw so that ν2 = 1 Hz and hence ω2 = 2π radian/s. The required 
moment of inertia is 

I2 = 
ω

κ 
2 ≈ 1.5025 × 10−8 kg · m 2 

2 

We must therefore increase the moment of inertia by 

ΔI = I2 − I1 ≈ 2.5 × 10−11 kg · m 2


Now let Ihoop be the moment of inertia of the wheel without the screw. Then


I1 = Ihoop + mr 1
2 and I2 = Ihoop + mr 2

2 

and 

ΔI = m(r2
2 − r1

2) 

where m = 0.020 g = 2.0 × 10−5 kg is the mass of one screw and r1 and r2 are the two 
radii of the screw. We will make the approximation that r1 ≈ 1

2 · 1.0 cm = 5.0 × 10−3 m 
and then calculate r2. 

ΔI 
r2 = r1

2 + ≈ 5.12 × 10−3 m 
m 

Therefore we need to move the screw out a distance 

Δr = r2 − r1 ≈ 1.2 × 10−4 m = 1.2 × 10−2 cm 

Problem 9.6 (Ohanian, page 488, problem 17) 

(a)	 We can use Bernoulli’s equation to solve this problem.


1

ρv2 + ρgz + p = constant 

2 
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where ρ = 1055 kg/ m3 . The flow of blood is slow enough that we can consider v = 0 
throughout the body. The above equation becomes 

ρgz + p = constant 

Now define the origin of z to coincide with the heart, and let p0 = 110 mmHg = 1.46 × 

104 Pa. Then the constant is given by 

p0 = constant


and


ρgz + p = p0 =⇒ p = p0 − ρgz


for other points in the body. For the feet, z = −140 cm = −1.4 m, and


pfeet = 1.46 × 104 − 1055 · 9.8 · −1.4 ≈ 2.91 × 104 Pa ≈ 221 mmHg


where g = 9.8 m/s2 . For the brain, z = 40 cm = 0.4 m, and


pbrain = p0 − 1055 · 0.4 · g = 1.46 × 104 − 1055 · 0.4 · 9.8 ≈ 1.05 × 104 Pa ≈ 79.8 mmHg 

where g = 9.8 m/s2 . 

(b) The pressure in the brain is still given by the expression above 

pbrain = p0 − 1055 · 0.4 · g


Now g = 61 m/s2, therefore


pbrain = p0 − 1055 · 0.4 · 61 = p0 − 2.57 × 104 Pa = p0 − 196 mmHg 

The heart could at most create a pressure p0 = 190 mmHg, so the pressure in the brain 
will be negative. 

Problem 9.7 (Ohanian, page 489, problem 18) 

The pressure at the surface of the liquid is p = 1 atm = 1.013 × 105 Pa. This 
pressure must be able to support the mass of the column of water raised in the tube. Let 
A be the cross-section of the tube and ρ = 1.0 × 103 kg be the density of water. Then 

p
pA = F = Mg = ρAhg =⇒ h = ≈ 10.3 m 

ρg 
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Problem 9.8 (Ohanian, page 489, problem 24) 

Let ρ
I = 920 kg/m3 is the density of ice and ρ

W = 1025 kg/m3 is the density of sea 
water. Also let M be the mass of the ice. The volume of the ice is 

M 
VI = 

ρ
I 

The volume of water displaced by the ice is 

M 
VW = 

ρ
W 

The volume above the water is 

ΔV = VI − VW = M 
1 

− 
1 

= 30 · 400 · 400 m 3 = 4.8 × 106 m 3 

ρ ρ
I W 

Therefore the total mass of the ice is 

ΔV 4.8 × 106 m3 

M = � � = � � ≈ 4.31 × 1010 kg 
1 − 1 1 − 1 

920 1025 ρ ρ
I W 

and the total volume of the ice is 

VI = 
M 

=
4.31 × 1010 

≈ 4.68 × 107 m 3 

ρ 920 
I 

(b) The total mass of the ice is 

M ≈ 4.31 × 1010 kg 

Problem 9.9 (Ohanian, page 491, problem 35) 

The block will sink until it displaces an equal mass of oil (ρ
O = 8.5×102 kg/m3) and 

water (ρ
W = 1.0× 103 kg/m3). (If the block is too heavy then it will sink to the bottom.) 

Let H = 10 cm = 10−1 m be the height of the box; A = 30 cm× 20 cm = 6× 10−2 m2 be 
the area of the bottom of the box; and M = 5.5 kg be the mass of the box. Also let h be 
the distance between the bottom of the box and the oil/water interface. The condition 
for equilibrium is 

M − HAρ
M = hAρ

W + (H − h)Aρ
O =⇒ h = O ≈ 4.4 cm 

A (ρ
W − ρ

O ) 
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Problem 9.10 (Ohanian, page 493, problem 50) 

Example 9 on page 481 illustrates a portion of this problem. 

We can use Bernoulli’s equation to relate the water at the top of the tank to the 
water emerging from the hole. 

1 
ρv2 + ρgz + patom = ρgh + patom =⇒ v = 2g(h − z)

2 

The water at both the top of the tank and the hole is in contact with the atmosphere; 
hence the pressure is the same, patom. The velocity at the top of the tank is zero. Note 
that the velocity of the water emerging from the hole is given as if it fell the distance 
h − z. Now the water flows horizontally from the hole with speed v above. The time it 
takes to hit the floor is given by 

� 
1 

2
gT 2 = z =⇒ T = 

2z 

g 

The horizontal distance it moves is 

� 
� 2z � 

d = vT = 2g(h − z) · = 2 (h − z)z 
g 

The maximum distance occurs when 

dd 1 1 

dz 
= 2� 

(h − z)z 
· (h − 2zmax) = 0 =⇒ zmax = 

2 
h 

The maximum distance is 

2 2 

Problem 9.11 
(a) The ball displaces a volume V of the liquid of density ρ; therefore the mass of liquid 
which overflows is 

M = ρV 

(b) At first, when the rod is approaching the water but when the ball is still above the 
water, the rod is carrying the full weight mg of the ball. However, as the ball is pushed 
into the water, the rod will carry less weight and when the ball is fully immersed, the 
weight even becomes negative; the rod is pushing down with a force ρV g − mg to keep 
the ball immersed. The water exerts a force (the buoyant force) of ρV g upwards on the 

dmax = 2 
� 

(h − zmax)zmax = 2 

� 
� 

h − 
1 
h 
� 

1 
h = h 
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ball. Since action equals minus reaction, the ball will exert a force downwards onto the 
water of ρV g. The weight of the container with the remaining water is W − ρV g. Hence 
the scale will read W − ρV g + ρV g = W . Notice that this is independent of the mass m 
of the ball. This is not surprising as the rod is carrying the weight of the ball. 

(c) The buoyant force upwards on the ball is ρV g and the weight of the ball is mg. 
Thus the tension (pulling upwards at the scale) T = ρV g − mg. The buoyant force ρV g 
is upwards on the ball, thus the ball will exert a force downwards onto the water of ρV g. 
The weight of the container with the remaining water is W − ρV g. Hence the scale will 
read W − ρV g − T + ρV g = W − ρV g + mg. Notice that in the case that ρV g = mg 
(neutral buoyancy) the answer under part (b) and (c) should be the same. The tension 
in the string (c) is then zero, and the force needed for the rod to keep the ball immersed 
(b) is also zero. The scale reads W in both cases. 
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