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Through out these solutions, the following quantities will be used: 

MS = 1.99 × 1030 kg is the mass of the sun 
ME = 5.98 × 1024 kg is the mass of the earth 
RE = 6.4 × 106 m is an approximate radius of the earth 
G = 6.67 × 10−11 N · m2/kg2 is the gravitational constant 
g = 9.8 m/s2 is an approximate acceleration of gravity 

at the surface 

Problem 5.1 (Ohanian, page 205, problem 22)
 

The law of conservation of mechanical energy states that
 

2mv
E = K + U = + U 

2 

Please see the Figure 8.14 on page 205. 

First consider E = E1. 

(a) The turning points occur when v = 0 ⇒ E = U . For E1 there is 
only one turning point, a left turning point at x ≈ 0.2. 

(b) The speed is maximum when U is minimum. For E1 the speed is 
maximum for x ≈ 1.0. The speed is a local minimum when U is a local 
maximum. For E1 the speed is local a minimum for x ≈ 1.6. Also for 
E1 there is a turning point at which v = 0; thus the minimum speed 
occurs for x ≈ 0.2. 

1
 



(c) The orbit is only bound if there are both left and right turning 
points. For E1 there is only a left turning point, so the orbit is unbound. 

Now consider E = E2. 

(a) For E2 there is a left turning point at x ≈ 0.3 and a right turning 
point at x ≈ 3.0. 

(b) For E2 the speed is maximum for x ≈ 1.0. For E2 the speed is a 
local minimum for x ≈ 1.6. Also for E2 there are two turning points at 
which v = 0; thus the minimum speed occurs for x ≈ 0.3 and x ≈ 3.0. 

(c) For E2 there is both a left and right turning point, so the orbit 
is bound. 

Now consider E = E3. 

(a) For E3 there is a left turning point at x ≈ 0.5 and a right turning 
point at x ≈ 1.3. 

(b) For E3 the speed is maximum for x ≈ 1.0. For E3 the speed is a 
local minimum for x ≈ 1.6. Also for E3 there are two turning points at 
which v = 0; thus the minimum speed occurs for x ≈ 0.5 and x ≈ 1.3. 

(c) For E3 there is both a left and right turning point, so the orbit 
is bound. 

Problem 5.2 (Ohanian, page 205, problem 25) 

The Table 8.1 on page 195 lists the two quantities you need 

“Yearly energy expenditure of the United States” 8 × 1019 J 
“Combustion of 1 gal. of gasoline” 1.3 × 108 J 

We can use these quantities to make various conversion factors. The 
amount of gasoline required by the United States per year would be 

8 × 1019 

8 × 1019 J/per year = gal. of gasoline/per year 
1.3 × 108 

≈ 6.2 × 1011 gal. of gasoline/per year 

The amount of gasoline required by the United States per day would 
be 
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1 
6.2×1011 6.2×1011gal. of gasoline/per year = × gal. of gasoline/per day 

365 

≈ 1.7 × 109 gal. of gasoline/per day 

Problem 5.3 (Ohanian, page 207, problem 43) 

(a) The total force that 6000 Egyptians can move is 

F = 6000 × 360 N = 2.16 × 106 N
 

The maximum weight Mg they can move is given by
 

F 2.16 × 106
 

F = µkMg =⇒ Mg = = = 7.2 × 106 N 
µk 0.3
 

The corresponding maximum mass M is
 

Mg 7.2 × 106
 

M = = ≈ 7.3 × 105 kg 
g g 

(b) The total power that 6000 Egyptians can deliver is 

P = 6000 × 0.20 hp = 1.2 × 103 hp 

Power in terms of force and velocity is given by the relation
 

P 1.2 × 103 1 hp
 
P = Fv =⇒ v = = × 

F 2.16 × 106 1 N 

We need to be careful because the unit “hp” is not a metric unit. The 
conversion is 

1 hp = 745.7 W 

Thus the velocity is given by 

P 1.2 × 103 W 
v = = × 745.7 × ≈ 4.1 × 10−1 m/s 

F 2.16 × 106 N 

Once we convert from “hp” to the metric unit “W,” we are assured the 
the answer has the units of “m/s.” 
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Problem 5.4 
Let L be the length of the unstretched cord, h = 100 m, k = 

100 N/m, m = 50 kg, and let x denote the distance the bungee jumper 
has fallen from the bridge. 

(a) Mechanical energy is conserved if we ignore air drag and if we 
assume that no heat is dissipated in the string. The relevant forces 
are then only gravity and the spring force, and these are conservative 
forces; thus mechanical energy is conserved. 

The cord will not stretch until she has fallen a distance L. Thus 
for x < L her mechanical energy is given by 

2mv
Ex<L = mg(h − x) + 

2 

For x > L she begins to stretch the cord, and her mechanical energy is 
given by 

mv2 k(x − L)2 

Ex>L = mg(h − x) + + 
2 2 

She starts from rest on the bridge, so her mechanical energy is given 
by 

E = mgh 

We want to choose L so that she comes to a stop just above the water; 
thus her mechanical energy at the point is given by 

k(h − L)2 

E = 
2 

Mechanical energy conservation gives 
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k(h − L)2 

mgh = =⇒ 
2 

2mgh 
L = h − ≈ 69 m 

k 

(b) The bungee jumper will hang freely at the distance d above the 
water at which gravity and the spring force balance. This is given by 

mg 
k(h − L − d) = mg =⇒ d = h − L − ≈ 26 m 

k 

Problem 5.5 
If the rotation rate was too fast, i.e. the gravitational force was not 

strong enough to provide for the centripetal force needed, the material 
at the equator would begin to move outwards, hence the planet would 
not be stable. 

(a) Section 9.1 beginning on page 212 calculates the acceleration 
at the surface of a planet (assuming a spherical planet). The result is 
given in Equation (6) on page 214. With the substitutions ME �→ M 
and RE �→ R, the equation is 

GM 
g = 

R2 

where M and R are the mass and radius of the planet respectively. If 
the planet has a uniform density ρ then the mass is given by 

M =
4 
πR3ρ =⇒ g =

4 
πGRρ 

3 3 

By the argument above, the maximum rotational rate of the planet is 
given when this acceleration is precisely the centripetal force for the 
motion of the material at the surface. This corresponds to a minimum 
period T . Circular motion gives the relation 
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v2 � 4 4 
g = a = =⇒ v = gR = πGρR · R = R πGρ 

R 3 3 

The period of motion is then given by 

2πR 2πR 3π 
T = = � = 

v 4 Gρ R πGρ 
3 

(b) For the value ρ = 3.0 g/cm3 = 3.0 × 103 kg/m3, the minimum 
period is 

T =
3π 

≈ 6.9×103 s ≈ 1.9 hour ≈ 7.9×10−2 day 
6.67 × 10−11 × 3 × 103 

Problem 5.6 (Ohanian, page 239, problem 15) 

Please see Figure 9.42 on page 239. 

The center of mass, located at rCM = 0 in the figure, is given as 

rCM = 0 = m2r2 − m1r1 =⇒ m1r1 = m2r2 

Now we suppose that the orbit of each star is a circle centered on 
rCM = 0. Then the centripetal acceleration for the motion of m1 is 
given by 

1 1 Gm1m2 Gm2 
a1 = F = = 

m1 m1 (r1 + r2)2 (r1 + r2)2 

Similarly, 

Gm1 
a2 =

(r1 + r2)2 

We can check that using m1r1 = m2r2 ⇒ ω1 = ω2 = ω where ω is the 
period of the binary system. We would like to make this equality, i.e. 
symmetry between m1 and m2, more apparent. 
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Gm2 
ω2 a1 = = r1 (1) 

(r1 + r2)2 

Gm1 
ω2 a2 = = r2 (2) 

(r1 + r2)2 

Adding equation (1) and (2) gives 

ω2(r1 + r2) = (m1 + m2) · 
G 

=⇒ 
(r1 + r2)2 

G(m1 + m2)
ω2 = 

(r1 + r2)3 

The period is then given by 

4π2 4π2(r1 + r2)
3 

T 2 = = 
ω2 G(m1 + m2) 

Problem 5.7 (Ohanian, page 239, problem 16) 

We need to use the result from problem 5.6, which is 

� �1/3
4π2 G(m1 + m2)T

2
 

T 2 = (r1+r2)
3 =⇒ r1+r2 =
 

G(m1 + m2) 4π2 

Let Msun be the mass of the sun and m1 = 10Msun and m2 = 25Msun
 

be the masses of the black hole and supergiant respectively. The period
 
is T = 5.6 days ≈ 4.84 × 105 s, and the distance between the stars is
 

� �1/3 � �1/3
G(m1 + m2)T

2 35 · GMsun(4.84 × 105)2 

≈ 3.0×1010 d = r1+r2 = = m 
4π2 4π2 
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Problem 5.8 (Ohanian, page 241, problem 28) 

(a) The mechanical energy of the projectile just after the gun shot 
is 

mv2 GME m 
E = − 

2 RE 

where ME and RE are the mass and radius, respectively, of earth; m 
is the projectile mass; and v is the “muzzle speed” of the gun. If the 
projectile is to just barely reach the distance of the moon, then the 
mechanical energy at that point is 

GME m 
E = − 

D 

where D is the distance between the moon and the center of earth. 
Using the previous two equations and the conservation of mechanical 
energy gives 

mv2 GME m GME m 
− = − =⇒ 

2 RE D 

v = 2GME 
1 

− 
1 

≈ 1.1 × 104 m/s 
RE D 

(b) The gun must deliver the appropriate kinetic energy to the 
projectile. 

2 � � 
mv 1 1 

≈ 1.2 × 1011 K = = mGME − J 
2 RE D 

1.2 × 1011 

1.2 × 1011 J = tons of TNT ≈ 29 tons of TNT 
4.2 × 109 

(c) The equations of motion for constant acceleration are 
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at2 

v = at and x = 
2 

The time required for the projectile to traverse the length L = 500 m 
of the barrel is 

2L 
T = 

a 

For the projectile to achieve the velocity v = 1.1 × 104 m/s at that 
point, the acceleration must be 

2v
a = ≈ 1.2 × 105 m/s 2 

2L 

Problem 5.9 (Ohanian, page 241, problem 30) 

(a) The orbital mechanical energy is given in equation (27) on page 
226. Using the replacement MS �→ ME and the values m = 3500 kg 
and r = 100 km + RE = 105 m + RE gives 

GME m 
E1 = − ≈ −1.07 × 1011 J 

2r 

For the satellite at rest on the surface of the planet, the mechanical 
energy is 

GME m 
E2 = − ≈ −2.18 × 1011 J 

RE 

The mechanical energy change is 

ΔE = E2 − E1 = −1.11 × 1011 J 

(b) Energy is required to raise the temperature of a material; and 
energy is required to cause a material to pass from one phase to another 
phase. (This latter process occurs at one temperature.) Energy is often 
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expressed as a calorie for such considerations. The conversion to Joules 
is 

1 cal = 4.187 J 

The “heat of fusion” for aluminum is 95.3 kcal/kg ≈ 3.99 × 102 J/kg. 
This is the amount of energy required to cause one kilogram of alu­
minum to melt. Thus the energy required to melt the entire satellite 
is 

Emelt = 3.99 × 102 × 3500 ≈ 1.4 × 106 J 

(Actually another smaller amount of energy is required to raise the 
temperature of aluminum to its melting temperature.) The “heat of 
vaporization” for aluminum is 2520 kcal/kg ≈ 1.06× 104 J/kg. This is 
the amount of energy required to cause one kilogram of aluminum to 
vaporize (boil). Thus the energy required to vaporize the entire satellite 
is 

Evapor = 1.06 × 104 × 3500 ≈ 3.71 × 107 J 

The total energy for both processes is ≈ 3.85 × 107 J. The energy 
change above is sufficient to cause both melting and vaporization. 

Problem 5.10 (Ohanian, page 267, problem 12) 

Let m1 = 1500 kg and m2 = 3500 kg be the mass of the car 
and truck respectively. Label the north direction by the y-axis and 
the east direction by the x-axis. Then the car has velocity v1 = 
80 km/h = 22.2 m/s along the y direction, and the truck has veloc­
ity v2 = 50 km/h = 13.9 m/s along the x direction. 

The momentum for the each is given by 

� = y 3.330 × 104 yp1 m1v1 ̂ = ˆ

p�2 = m2v2x̂ = 4.865 × 104 x̂
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where the units for �p are kg · m/s2 . 

(a)	 The momentum after the collision is 

P� = (m1 + m2)V� = 5000 V�

Momentum conservation gives 

P� = p�1 + p�2 = 4.865 × 104 x̂ + 3.330 × 104 ŷ

Thus the velocity of the two cars after the collision is 

V� = 
1

(4.865 × 104 x̂ + 3.330 × 104 ŷ) = 9.73 x̂ + 6.66 ŷ
5000

The magnitude is 

|V | = (9.73)2 + (6.68)2 ≈ 11.8 m/s 

The direction is given by 

6.66 
θ = tan−1 ≈ 34◦ 

9.73 

This means that both cars move 34◦ north of east. 

(b) The kinetic energy before the collision is 

m1v1 2Kbefore = 
2 

+ 
m2v

2 

≈ 7.1 × 105 J 
2 2 

The kinetic energy after the collision is 

(m1 + m2)V
2 

Kafter = ≈ 3.5 × 105 J 
2 

The change in kinetic energy is 

ΔK = Kafter − Kbefore ≈ −3.6 × 105 J 

Thus 3.6 × 105 J of kinetic energy is lost during the collision. 
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Problem 5.11 (Ohanian, page 267, problem 13) 

The force of impact of the hydrogen atoms on the satellite is, as 
always, just 

d�p
F = 

dt 

For convience, label the area of the satellite A = 1.0 m2, the density of 
ions ρ = 107 cm−3, the mass of each ion m = 1.7 × 10−27 kg, and the 
speed of each ion v = 4 × 105 m/s. 

Consider a small time interval, Δt. Then the ions impart a small 
amount of momentum, Δp�, to the satellite. This gives the relationship 

Δp�
F ≈ 

Δt 

which will become exact in the limit Δt → ∞. (It turns out that if 
the solar wind is assumed to be uniform in time, then the relationship 
written is exactly true even for finite Δt.) 

The volume of solar wind that strikes the satellite during the time 
interval Δt is 

V = AvΔt 

The number of ions in this volume is 

N = ρV = ρAvΔt 

If all the ions stick to the satellite, then the momentum delivered to 
the satellite, along the direction of the solar wind, is 

Δp = mvN = mρAv2Δt 

Therefore the force is 

� Δp� mρAv2Δt 
F ≈ = = mρAv2 

Δt Δt 
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which is exact in the limit Δt → 0. Therefore the force is exactly 

F = mρAv2 = 2.72 × 10−9 N 

where the direction is given by the solar wind. 

Problem 5.12 (Ohanian, page 268, problem 27) 

As in Example 6 on page 254, we will use Equation (26) on page 254 
which gives 

1 1 
= zρ dV = zρ dV + zρ dV zCM 

M M semi rod 

where we have broken the integral into two pieces: one piece, “semi”, 
includes all the mass along the semicircular section, the other piece, 
“rod”, includes all the mass along the straight section. 

The “semi” integral was worked out in Example 6. The integral 
is then given as 

zρ dV = 2ρAR2 

semi 

(Be careful. The M here is the mass of the entire section; the M for 
Example 6 is the mass for only the “semi” section.) Now we need to 
calculate the remaining “rod” integral. 

zρ dV 
rod 

But this integral is clearly proportional to the z component of the center 
of mass for the rod, which is 0. We can also see this because z = 0 
along the straight section. Therefore 

zρ dV = 0 
rod 

Therefore 

zCM =
1 

2ρAR2 + 0 
M 
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The mass is given by 

M = Msemi + Mrod = ρAπR + ρA2R = ARρ(π + 2) 

and then 

2R 
zCM = 

2 + π 

As in Example 6, the symmetry of the masses indicates that 

= 0xCM 

Problem 5.13 (Ohanian, page 270, problem 45) 

Let v = 5.0 × 103 m/s and h = 2.5 × 104 m and m be the mass of the 
ballistic missile. 

Consider the equations of motion for an object of mass m ′ with 
only horizontal speed v ′ at an altitude of h. The equations of motion 
give 

gt2 

z = − and x = v ′ t 
2 

This object will strike the ground at the time 

2h 
tland = 

g 

and a location 

2h 
xland = v ′ 

g 

′ mFor the piece with mass m = 
2 that falls immediately downward, 

v ′ = 0, so 

0xland = 
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For the piece with mass m ′ = m that does not fall immediately down­
2 

ward, momentum conservation gives 

m m 
· 0 + · v ′ = mv =⇒ v ′ = 2v 

2 2 

The subsequent motion gives 

2h 
xland = 2v ≈ 7.1 × 105 m 

g 

The center of mass moves as if the missile never exploded, i.e. m ′ = m 
and v ′ = v. Then 

2h 
vxland = 

g 

which is clearly halfway between the landing points for the two frag­
ments. 

Problem 5.14 (Ohanian, page 270, problem 50) 

This problem refers to problem 5.10. 

(a) The translational kinetic energy of the center of mass before the 
collision is 

2 � 2P 2(m1 + m2)vCM (m1 + m2)V
= = 

2 2(m1 + m2) 2 

where P� is the total momentum and V is the velocity of the center of 
mass, both calculated in problem 5.10. This form illustrates that the 
translational kinetic energy is conserved if momentum is conserved. 
Thus the value is given by 

2 5000 · (11.8)2(m1 + m2)vCM = ≈ 3.5 × 105 J 
2 2 

The internal kinetic energy satisfies equation (34) on page 260
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(m1 + m2)v
2 (m1 + m2)v

2 
CM CM K = Kint + =⇒ Kint = K − 

2 2 

So before the collision, 

Kint = Kbefore − 3.5 × 105 ≈ 7.1 × 105 − 3.5 × 105 ≈ 3.6 × 105 J 

where the value of Kbefore was calculated in problem 5.10. 

(b) The translational kinetic energy of the center of mass after the 
collision is the same as before by the argument above. The value is 
given by 

(m1 + m2)v
2 5000 × (1.18 × 10−2)2 
CM = = 3.5 × 105 J 

2 2 

After the collision, both the car and truck move as one object, so there 
is no internal kinetic energy. 

Kint = 0 
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