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Solutions for Assignment # 3

by Dru Renner

Problem 3.1

Let the mass of the particle be m = 6.0 kg. The two forces (measured in Newtons)
acting on it are

—

Fi=22—53+32 and Fy=—43+8)+2
(a) The net force is the vector sum of the two vectors.
Frop = Fy + Fy = =23 + 30 + 42
(b) The acceleration follows from Newton’s Second Law.

1. Lo 1o 2
a = — = ——= —_— —_—2Z
et 0 20730

The magnitude of acceleration is given by
1
la| = ﬁ\/29 ~ 0.90 m/s’

Note that the mass was given as m = 6.0 kg and we were told that the force was
given in units of Newtons, so simply “plugging” in the numbers will give an answer in
units of m/s’.

Problem 3.2

Let o = 120° be the opening angle, 77 be the tension in the upper half of the string,
T, be the tension in the lower half of the string, and F' = 180 N be the force the archer
exerts on the bow string. Note the archer pulls at the middle of the string so the picture
below is symmetric.




Equilibrium in the y direction requires
T} sin (%) — Tysin (%) =0 = T, =T=T
where T is either tension 1) or T5. Equilibrium in the = direction requires

F—Tcos<g>—Tcos<g>:0 = T:L
2 2 2COS(%)

So therefore, the tensions in either half of the string are

180

T =T = ——
! 27 2¢0s(60°)

=180 N

Problem 3.3

Let N, [, and s be defined as in the problem and let 77 be the tension in the lower
portion of the wire and 7T, be the tension in the upper portion of the wire. Assuming that
the upper portion of the wire is infinite allows us to draw the upper wire as a straight
line.

(a) As the picture shows the angle # is given by
cos(f) = ?
Equilibrium in the y direction requires

T —T; SIH(G) =0 - T =T sm(H)

Equilibrium in the z direction requires

N —Ticos(6) =0 — T, = cos(0)



Using the relationship for cos(#) from above gives

N
g,
7 S
Using the relationship for cos(#) and the fact that sin(§) = /1 — cos?(0) gives
2
TQ:NG) 1—<5>
5 [

2
In the limit of s < (or § < 1) the factor {/1 — (%) from above becomes 1. So T

becomes
l
T2 - N (-) - T1
s

(b) Now suppose s = 2.0 cm, [ = 1.5 m, and N = 150 N. Then the tension is

1.5 x 10?

T =150
(55

>:1.1><104N

Problem 3.4

Let m = 2000 kg, [ = 12 m, F' = 1800 N, 7" be the tension in the wire, and € be the
angle the cable makes with the vertical.

Equilibrium in the y direction requires

T cos(f) —mg =0 — T =




Equilibrium in the x direction requires

F
Tsin(d) — F =0 - T = —
sin(6)
Combining both equations gives
F
tan(f) = —
mg

This gives the value of # as

0 = tan™' (%) = tan™! (%) ~ 5.2°

Note that the length [ was never used.

Problem 3.5

Let m; = 10 kg, mo = 3 kg, T} be the tension in the first cord, and 75 be the tension
in the second cord.

First Chandelier  Second Chandelier

T, T,
m, m,
T,YYmg m.g

Equilibrium for the first mass m; requires

Th—mig—T,=0 == Ty =mig+15
Equilibrium for the second mass my requires

Ty —meg =0 = Ty = mag
Combining both equations gives
Ty, =mog =3g9g~29.4 N

and

Ty = myg +mag = (mq +my)g =139 ~ 1274 N

Notice that this last answer for 77 is the same answer we would have gotten had we
consider both masses m; and my as one object.
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Problem 3.6

Let m, R, [, and N be defined as in the problem and let T" be the tension in the
cord and 6 be the angle between the cord and the wall.

To do this problem we imagine all the forces acting at the center of the ball. So the
shape of the ball is irrelevant except that the length of the cord effectively becomes R+ 1.
Trigonometry gives the angle 0 as

) R
sm(0) = R——|—l

Equilibrium in the y direction requires

T cos(#) —mg =0 = T =

Equilibrium in the x direction requires
Tsin(@) — N =0 == N = T'sin(6)
Combining both equations gives

_myg sin(6)
cos(f)

Using the relationship for sin(f) from above and the fact that cos(f) = /1 — sin?(#) gives

N = mg sin(f)
1—sin?(9)



This last form is appropriate for evaluating the limit as [ — oo. You should notice that
[ only occurs in the combination l—l%. This quantity is dimensionless, i.e. it has no units.
Using a dimensionless quantity helps us figure out what large and small mean for our
problem. For this problem, the limit of large [ implies that [ is many multiples of R.

The limit as [ — oo is clearly

N=0forl — o0

Problem 3.7

Let m, 6, and uy be as defined and let T" be the tension in the rope and N be the
normal force on the box.

Equilibrium in the y direction requires
N+ Tsin(f) —mg =0 = N =mg — T'sin(0)

Equilibrium in the z direction requires

T
T cos(0) — ueN =0 — N = CML@
k

Combining both equations gives

_— pmg
cos(#) + pu, sin(6)

The minimum value for T occurs at 6,,;, when

a1 (—1) Himg
do [coS(Omin) + ik SID(Omin)]

2 [_ Sin(emin) + ,uk; COS(emin)] = O

which gives an equation for O,



— Sin(Omin) + 1k €08(Omin) = 0 — tan (Omin) = 1k

Using the relationship for tan(6,,) from above and the fact that cos(f) = , /;W) gives

- 1+tan?

T . = Lrmg
min €08 Omin+ig Sin Omin

— prmg
€08 Omin (14415 tan Omin)

— HEmg
1 .
Ty (1 90 i)

— KEpmg

I 2
142 (1+up)

Therefore, the final result for the minimum tension is

mEgmg

v Hi + 1

Tmin =

Problem 3.8

For the first part of the experiment, Professor Lewin placed a wooden box on an
incline and measured the angle at which the box started to slide. So we want to examine
the point at which the static force just barely holds the box in place. If we label the angle
of the incline relative to the horizontal # then the critical angle 6. at which the box slides
is found by setting the static frictional force to its maximum (Fy; = pusN where N is the
normal force) and balancing all forces.

Equilibrium perpendicular to the incline requires
N —mgcosf =0
Equilibrium along the incline requires
Fs—mgsinf =0
At the angle ., the box is just about to slide, so the static frictional force is maximum.
Fs = pusN
Combining these equations gives the result for p

s = tand,



The results from the lecture demonstration and the calculated values for u, follow:

Class | Critical Angle 6. [Ls
10:00 20° 4+ 2° | 0.36 £0.04
11:00 18°+2° | 0.32+0.04

The calculation of errors follows as:

dp1s = tan(20° + 2) — tan 20° ~ 0.04

dp1s = tan(18° + 2) — tan 18° ~ 0.04

For the second part of the experiment, Professor Lewin attached the wooden box, call
this my, to another mass, call this ms, through a pulley. The value of my was increased till
m; started to slide up. This corresponds to the moment at which the static friction can
no longer prevent motion. This occurs when the force of gravity on m; directed along the
incline (m,gsin #), the tension (msyg), and the maximum static friction force (pusmigsiné
where m;gsin@ is the normal force) all balance. For a detailed explanation of this, see
problem 3.12. The relevant equation is (3).

Mog = mygsin @ + psmqgcost

The > sign is replaced with an = sign because here the mass m; is just about to move.
Solving the above equation for u, gives

My — my sin @

Hs =
my cosf

In lecture the angle 6 was fixed at # = 20° + 1°, the mass m; was m; = 361 + 1g. The
results from the lecture demonstration and the calculated values for p, follow:

Class | Critical Mass ms Ibs
10:00 2710 £25 g | 0.43£0.10
11:00 245+ 15 g | 0.36 £ 0.07

The calculation of errors follows as:

5, _ (270425)— (361~ 1)sin20—1) 270 —361sin20 _
Hs = (361 — 1) cos(20 + 1) 361cos20

5, _ (245415) = (361 = 1)sin(20—1) 270 —361sin20 _
Hs = (361 — 1) cos(20 + 1) 361cos20

Notice that all the values for u, are consistent with each other!
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Problem 3.9

Let m, p, and « be defined as in the problem and let F' be friction. Also let Fp be
the force of your push against the book.

(a) The free-body diagrams for both cases are

About to Fall Down  About to Slip Up

(b) First consider the case for which the book is about to fall down. The frictional force
points up and is given by

F=uN
Equilibrium in the y direction requires
uN + Fpcos(a) —mg =0
Equilibrium in the x direction requires
Fpsin(a) =N =0 = N = Fpsin(a)
Combining both equations gives
mg

Fo —
P cos(a) + psin(a)

Now consider the case for which the book is about to slip up. The frictional force
points down and is given by

F=uN
Equilibrium in the y direction requires

Fpcos(a) — uN —mg =0



Equilibrium in the x direction requires
Fpsin(a) =N =0 = N = Fpsin(a)
Combining both equations gives

Fp: mg

cos(a) — psin(a)

(C) The friction will be zero when there is no relative motion between the wall and the
book. This requires that the upward portion of Fp balance the force mg, which gives the
equation

Fpcos(a) —mg =0 — Fp= g
cos(av)
For a =0
mg
F = =
P cos(0) g
For v = 90°
mg
Fp=—"19___,
P cos(90°) >

(d) So lets examine the equation above for the force required to just start the book
sliding up.

Fp = aL
"7 cos(a) — psin(a)

As we increase p the denominator will become smaller and hence the force Fp will become
larger. At some point, call it 4*, the denominator becomes zero and the force becomes
infinite. This indicates that it is impossible to slide the book up because it would require
an infinite push. For p larger than p*, the force required to start to slide the book up
becomes negative. This is clearly unphysical and indicates that the equation is no longer
valid for p larger than p*.

1
cos(a) — p*sin(a) =0 — pwr= cos(a)

sin(a)  tan(a)

Therefore for u > p* it is impossible to slide the book up by applying a push at the
angle a. We notice that for 4 < p* the above equation gives a finite value for Fp. Thus
if we were to push harder than that value the book would indeed slide up. Therefore, for
i < p* it is possible to push the book up if we push hard enough.
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Problem 3.10

This is the solution from “the Flying Circus of Physics” by Jearl Walker.

The frictional force on the tire does not depend on the surface area in contact with
the pavement. Thus a wide slick is as effective as a narrow one. If the tires are spun over
the surface as is often done in drag racing, then the wide tries have an advantage in that
it has a larger surface area to heat and is less likely to melt. Melting greatly reduces the
coefficient of friction.

Problem 3.11

Let m = 60 kg, # = 30°, Fp be the force with which the woman pushes, and N be
the normal force on the box. There is no friction in this problem.

(a)

(b) Assuming that the box is “at rest or in uniform motion” implies that there is no
net force on the box. Then equilibrium in the y direction requires

mg
cos(0)

Ncos(f) —mg =0 — N =
Equilibrium in the x direction requires
Fp — Nsin(f) =0 = Fp = Nsin(f)
Combining both equations gives
Fp = mgtan(f)
There are three forces acting on the box. The magnitudes are

mg = 60g ~ 588 N

Fp = mgtan(f) = 60g tan(30°) ~ 339 N

mg 60¢g
N = = ~ 679 N
cos(f)  cos(30°)
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Problem 3.12

Let my; = 1.5 kg, mo = 3.0 kg, 8 = 35°, up = 0.40, T be the tension in the string,
and N be the normal force on the mass m;. Let a be the acceleration of either mass.

'mg

This problem was worked out in detail in lectures, including a demonstration which
allowed you to calculate the static friction coefficient (problem 3.8).

You first have to realize that the tension is the same everywhere in the string. This
is ONLY true because: 1) the string is “massless,” 2) the pulley is “massless”, and 3)
it rotates without any friction. In the near future we will deal with pulleys that have a
finite mass, and you will see that then the tension on the left of the pulley is different
from that on the right.

The forces are shown in the figure. Notice that I did not put the frictional force in
(yet). Given the values of my and my, and given the fact that the author ONLY mentions
p (not ), there is little doubt that m; will be accelerated up-hill. If you assume that,
then you can proceed very quickly. You now know that the frictional force is maximum,
and that its value is ux N, and that the direction is opposite to 7' (this is the minus x
direction in my convention). Since there is no acceleration in the y-direction of my, you
find immediately that

N =mgcosf
Thus for object 1 we have
T —mygsinf — ugymyigcosf = mya (1)
and for object 2 we have
mag — 1T = moa (2)

You can solve for T and for a, and you find

_ in@ 0
. glms — my (sin @ + py cos 0)] ~ 0.37¢g ~ 3.6 m/52
my + Mo
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If you had NO apriori knowledge about the motion, there are three possibilities: 1)
my is accelerated up-hill, 2) m; is accelerated down-hill, 3) there is NO acceleration; m;
and my stay put. To decide, you now have to know the static friction coefficient. As
derived in lectures:

1) will be the case if

Mag > mygsinf + pymygcost (3)

2) will be the case if

mag < mygsinf — pgsmsgcosf (4)

3) will be the case if neither condition 1) nor condition 2) is met (the frictional force is
then in general less than the maximum value possible). It could be directed in the +x
direction or the —z direction, it could even be zero. Once you find that e.g. condition
1 is met, you can now proceed. However, you now know that the object is moving,
the frictional force is therefore uxN, and you proceed with eqs. (1) and (2). Since the
author of this problem only gives you the kinetic friction coefficient, he is telling you in
an indirect way that the acceleration will not be zero. You can now test for the direction
of the acceleration, by using eqs. (3) and (4), replacing ps by py, and you will conclude
that indeed m; is being accelerated up-hill.

Problem 3.13

Let N; and F; be the normal and frictional forces for one finger, and let N, and F,
be the normal and frictional forces for the other finger. The key to understanding this
problem is to realize that the fraction of weight supported by each finger can be different.
Clearly the finger closest to the center of the yardstick will bear a larger fraction of the
weight and hence will exert a larger normal force on the yardstick.

Imagine starting each finger under a separate end of the yardstick. Initially each
finger shares the weight equally, but as you attempt to move your fingers one of them,
say finger 1, starts to slide. (To avoid sliding you would have to start with your fingers
exactly the same distance from each end and move with exactly the same speed. Clearly
human fingers are not capable of this. And the yardstick itself is too irregular for that
precision.) Immediately after finger 1 slides, both fingers still share the weight equally
(N7 = N3), but because the kinetic coefficient of friction is less than the static coefficient
the friction on finger 2 is greater than the friction on finger 1 (Fy = pusNo > pp Ny = Fy).
As finger 1 continues to slide in, it will bear more of the weight of the yardstick until [V,
is large enough that F; = u Ny = us Ny = F. As finger 1 moves in just a bit more, finger
2 will no longer be able to sustain the frictional force from 1, and hence finger 2 will move
and finger 1 will stop. The whole procedure will begin again.

Problem 3.14

Let £ = 150 N/m, and L = 0.15 m. To stretch the spring to twice the relaxed length
L requires the force

F = k|2L — L| = kL = (150)(0.15) = 22.5 N
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This is really the force per end. If you held both ends then you would have to exert this
force for each hand, or if you attached one end to the wall you would have to exert this
force for one hand.

To compress the spring to half the relaxed length requires the force
1 1 1
F = k|§L — L= §kL = 5(150)(0.15) =11.25 N

And again, this is the force per end.
Now let m = 3 kg.
(a) The angular frequency is given by

u)_,/ ¢—oN71@

(b) The period of the oscillations is given by
~ 0.89 s

(a) The frequency is given by

Problem 3.15

You aim at the sun. The sun is exactly in the place where it appears to be. It is
true that the sun was not on the horizon 8 minutes ago when it emitted the light you
are now seeing. (In 8 minutes the Earth rotates about 2°.) However, “the sun wasn’t
on the horizon” does not mean “the sun moved.” It means “the horizon moved.” Even
refraction of the earth’s atmosphere, which will make the sun appear “higher” above the
horizon than it really is, does not matter (this will be clear when you take a course on
optics).
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