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Solutions for Assignment # 2

by Dru Renner

Problem 2.1

(a) We need to mathematically describe the motion of the first stone. This is one-
dimensional motion, in the vertical direction, with a constant acceleration due to the
Earth’s gravity. Label the vertical direction  with the z-axis pointing up from the surface
of Earth and with the origin (x = 0) at the surface of Earth. If we set vy = 15.0 m/s and
g = 9.8 m/s? and choose the time ¢ = 0 to coincide with the throwing of the stone, then
the motion is

= vyt ! t2
T = vt — =
ot =59

Now we can ask, when is the first stone at the height A~ = 11.0 m? This question
leads to the equation

1
h = vgt — 59152

which is a quadratic equation in ¢ with the fwo solutions

vo £ \/vg — 2gh
= = [ —  t_=122sandt, =184s

9

If we label the quantities for the second stone z', ¢, and v, then similarly

1
! 14! 12
T =yt — =gt
0 29
But you must be careful here: ' is the amount of time elapsed since the second stone was
thrown; and the second stone is thrown 1.00 s after the first stone is thrown. So there
is a delay of At = 1.00 s between the throwing of the stones, and thus we can write the
relationship between ¢ and t' as

t'=t— At

Now at the times ¢t = t,., or t' =t — At, the two stones are required to hit, implying
that ' = h. This leads to the equation



h = vj(te — At) — %g(ti — At)?

with the solution

_ h+ ig(te — At)?
N ty — At

!
Yo

So for the two possible values ¢, there are two possible velocities v
t_ =1.22 s with vj) = 51.1 m/s = 114 mph

and

ty =1.84 s with vy = 17.2 m/s = 38.5 mph

The speed of 114 mph would be a very good fast ball and almost as good for a tennis
serve ( which could be nearly 140 mph ), therefore the plausible answer is 17.2 m/s =
38.5 mph.

(b) Now you must wait 1.30 s before throwing the second stone. The equation above,
vy = (h+ 59(te — At)?)/(te — At) still works, but now At = 1.30 s. The first thing you
should notice is that ¢ = 1.22 s is less than At = 1.30 s. So the first ball reaches the
height h, for the first time, before you even throw the second ball. So the only possibility
is to strike the first ball at the second time

t4 = 1.84 s with v = 23.0 m/s = 51 mph
Problem 2.2

If an object experiences free fall for a length of time ¢ then the distance it falls is
given by d = % gt%. Thus measuring both ¢ and d provides a value for g:

2

=%

If the error for the measurement of d is Ad and the error for the measurement of ¢ is At
then, by our simple method, the error for ¢ is

2(d + Ad)
(t—At)2

where the first quantity represents the largest value of g consistent with Ad and At.

The data from lectures, the resulting values for g, with the experimental error, and
the consistency with the value of ¢ = 9.80 m/s? for Boston are given below. ( Both
lectures make the identical measurement for the 3.000 m drop. )
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Distance Dropped Time of Flight Experimental Value for g | Consistency
d=3.0004+0.003m | t =0.781 £0.002 s | g = 9.84 + 0.06 m/s? yes
d=1.500+0.003m | t=0.551+0.002s | g =9.8840.09 m/s2 yes
d=1.500+0.003m | £t =0.550+0.002s | g =9.924+0.09 m/s2 no

The last value for ¢ is not consistent with the value of g = 9.80 m/s?. This is most
likely due to an under-estimate of the error for d. The way the apple hangs and rotation
of the apple as it falls are factors that are hard to account for, so the error of 0.003 m is
probably too small.

Problem 2.3

The sum A + B + C is graphically performed by (1) drawing A, (2 ) ‘sliding’ B so
that the tail of B lies on the tip of A, (3) ‘sliding’ C so that the tail of C lies on the tip
of the ‘new’ B, and (4) drawing the vector, A+ B+ C, from the tail of A to the tip of
the ‘new’ C.

The vector —C’ is drawn along the direction opposite to C with the same length as

C. Then, the sum A+B-Cis graphically performed as above but with the vector —C
used in place of C.

N N
c
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Problem 2.4

The vector A has the components: A, = 5.0, A, = —3.0, and A, = 1.0. The
magnitude is given by

Al = /A2 + A2 + A2 = /(5.0)2 + (—3.0)2 + (1.0)2 = V/35.0 = 5.9

The angle 6, between A and the z-axis can be found from the relation

= |A]| cos 0,



which gives

A 5.0
0, =cos ' | == | =cos!|[—— | =32.3°
<|A|> <v35-0>

Similarly,

and

Problem 2.5

You are given the vector
U =31 —6y+22

The magnitude is |v| = v/49 = 7, so the vector

- 1
v = T = 3/T0 = 6/ +2/72
v
has the same direction as ¢ but magnitude |[v'| = 1. Finally the vector

-

v =0 = 6/7i —12/T) + 4/72

has the same direction as v’, which has the same direction as ¥, but now has magnitude

[v"] = 2.

Problem 2.6

You are given the distances to Venlo (31 km) and Eindhoven (39 km), but you are
not given any information concerning the directions to these cities. The greatest distance
between the two cities is 31 km + 39 km = 70 km. This occurs when the two cities are
in opposite directions. The shortest distance between the two cities is 39 km - 31 km =
8 km. This occurs when the two cities are in the same direction. The actual distance is

47 km, which is greater than 8 km and less than 70 km.



Problem 2.7

You are given the vectors

—

A=23-3) and B=-1%+aj— 53

Now you must choose a value of a that makes A and B perpendicular. Mathematically
you must satisfy

+
&
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Problem 2.8

You are given the vectors

A=-52-3)+2 and B=2i+1§—32
The calculations for parts (a), (b), and (c) are all done ‘component-wise.’

(a) A+B = (-5+42)i+( —3+1)j+(1+-3)2
= —3%—2)—22

oy
|
]l
|

(b)

= (—5-2)i+( —3-1)j+(1—-3)3
= Ti— 4+ 43

(€) 24-3B = (2(=5)—3(2) )i+ (2(=3)—3(1) )j+ (2(1) —3(=3) )2
= —16&—97+ 112
(d) A-B = (-5)2)+(=3)(1) + (1)(-3)

BoA = (2)(=5)+(1)(=3) + (-3)(1)

In fact it is true that A- B = B - A for any two vectors.

() AxB = ((-3)(=3)— (1)(1) )&+ ((1)(2) = (=5)(=3) )j + ((=5)(1) = (=3)(2) )2
= 8 —13y+ 12
BxA = ((1)(1) = (=3)(=3) )&+ ( (=3)(=5) = (2)(1) )§ + ( (2)(=3) — (1)(=5) )2
= 81+ 13y—1z2
= —(8% —13y+12)
In fact it is true that A x B = —B x A for any two vectors.
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Problem 2.9

We are given the vectors
A=22-3) and B=—-i+4j—52
and we want to find a vector
V =a&+bj+ck

that has unit length ( [V| = 1) and is perpendicular to both A and B (V- A = 0 and
V.-B=0)

— —

V.-A = 0
- 2a — 3b = 0
== a = %b
V-B = 0
= —a+4b—-5¢ = 0
— —3b+4b—5¢c = 0 (usinga=3b)
— b = 2c
= a = 3¢ (usinga=3b)

So now we know that V' has the form

—

V =3¢t + 2cy + ¢z

Now imposing the condition that V is normalized to unity gives the equation

V] = 1
= 9 +4c2+c* = 1
— 14¢? = 1
= c = +1/y/14

So this finally gives just two vectors

, 1
V=dt——(38+2)+2)

V14

Alternatively, we could form A x B which is perpendicular to both A and B. Then
we could normalize this new vector and include the two possible directions; this would

give V= i|A’>1<B’|A’ x B. You can check that this expression is identical to the result

above.



Problem 2.10

The position as a function of time is given as
7= (6—2t)7 + (3+4t — 6t%)y — (1 + 3t — 2t*)2

(a) The velocity vector at any time ¢ is given by

s
S dt
d d d
= —(6-2 — 4t — 612 1 — 212
dt(6 ) d(3+t 6t°)y — d(+3t t°)
= (=2)2+ (4 -6(2)1)y — (3—2(2)1)2
= 2@+ (4—12t)y — (3 —41)2
So in particular at ¢t = 3,
7 = =25+ (4-12(3))y— (3—4(3))z
= 23 —325+92

(b) The speed at t = 3 is given by the magnitude of ¥ at ¢ = 3 which is

o] = \/(—2) + (~32)2 + (=9)? = V1109 = 33.3

So the speed is 33.3 m/s.
(C) The acceleration vector at any time ¢ is given by
dv

dt

d
—(—2
o (2)+
= (0)@+ (-1

—12§ + 42

a =

5(4 19ty — %(3 )i
2)j — (—4)2

So in particular at t = 3

ST
I

—12§ + 42

The magnitude of @ at t = 3 is

la| = /(0)2 + (=12)2 + (4)2 = V160 = 12.6
So the magnitude of acceleration at ¢ = 3 is 12.6 m/s?.
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Problem 2.11

Choose the z-axis pointing vertically up; the z-axis pointing horizontally along the
direction of the car; and choose the z-z origin to be the corner of the ramp. Also choose
the t origin to be the moment when the car is at the corner of the ramp, and let vy, be the
unknown speed of the car at that moment. The subsequent motion of the car is projectile
motion.

The vertical motion of the car is given by

1
S

So we can ask the question when does the car fall the distance h = 2.0 m? This gives the
equation

1
h= gt
29
with solution
2h 2(2.0
proo 20 | 220 e
g (9.8m/s”)

The horizontal motion of the car is given by
T = Vpyt
so at t = t* the horizontal position is
" = vgut*

For the stunt driver to avoid crashing, z* must be larger than the distance d = 24.0 m.
So

x> d
= Vg t* > d
= vy, > £
= Uy > th (using t* = %)
9
Therefore, to clear all the cars
24.0
Vo > =
> 37.6 m/s



Problem 2.12

We will need the same equation three times, so consider the case of arbitrary ball
speed, vy, arbitrary angle, §, and arbitrary range d. The motion will be projectile. The
usual quantities vy, and vy, are given by

Voz = Vg CcOS O and Vo, = Vg Sin b

It is simplest to choose a coordinate system with the origin on the ball and the usual
labels for vertical and horizontal. The vertical motion is

1
z = vgsin(f)t — §gt2

We want to know the time t* when the ball strikes the ground. This gives the equation

1
0 = vg sin(0)t* — §gt*2

which has the solutions
=0 and t* = 2vysin(0)/g

of which the non-zero solution corresponds to the ball striking the ground.

The horizontal motion is given by
x = vy cos(f)t

So the range is given by

2 2 .
d = v COS(Q)t* _ Yo COS(gQ) SIH(Q)

Solving that equation for vy gives

T
0 2 cos(0) sin(6)

(a) Now we want to determine vy when 6 = 14° and d = 240 m.

vy = J 24009.8) =708 m/s

2 cos(14) sin(14)

(b) Suppose the ball speed was greater by 0.6 m/s. We want to determine d when 6 = 14°
and vp =70.8 m/s +0.6 m/s = 71.4 m/s.
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g 2(71.4)? cos(14) sin(14)
B 9.8

=244.1m

The ball will travel 244.1 m —240.0 m = 4.1 m farther.

(C) Suppose the angle was greater by 0.5°. We want to determine d when 6 = 14°4+0.5° =
14.5° and vy = 70.8 m/s.

2(70.8)? cos(14.5) sin(14.5)
9.8

d= =248.0 m

The ball will travel by 248.0 m —240.0 m = 8.0 m farther.
Problem 2.13

The motion of the skier is identical to the motion of the car in problem 2.11, if you
choose a similar coordinate system, with vy = 110 km/h = 1656&%;“ = 30.6 m/s. So the
motion is given by

xr = vt and z= _ith

(a) The equations above descibe the motion of the skier, but the equations do not
know where the ground is. We must supply that information. Normally we choose the
coordinates so that the ground corresponds to z = 0, but that is not true in this case. The
gound is really a hill. It starts at x = 0 and z = 0, but then it slopes down at an angle
of 45° i.e. it is a line through the origin with slope -1. The mathematical description of
the line is

Zground = —Lground

The skier landing on the slope is mathematically indicated by the intersection of the curve
of the skier and the curve of the ground. Suppose this intersection occurs at the horizontal
position x; because this is a point on the ground we know that the correspondingly 2z = —x
So if the skier lands at time ¢ = ¢*, then

r = —z
= Vo t*
z = —igt?
= ottt = %gt"‘2
= t* = 0 or
o=

10



of which the non-zero solution is the one that corresponds to the skier landing. At that
time,

202 2(30.6 2
v — ot = 2V _ 2006m/s)T o)
g 9.8
and z=—r=—191m/s

So the distance down the slope is

d=+vVz2+ 22 =270m

(b) The skier attains large speeds which make considerations of air resistance necessary.
Air resistance makes the actual distance shorter than our calculated distance. This will
be explored in more detail in lecture.

Problem 2.14

If the radius of the orbit is R = 1.50 x 10'! m, then the circumference of the orbit is

C =27R = (2)(3.14)(1.50 x 10"'m) = 9.42 x 10''m

The Earth travels this distance once in the time 7 = 1 year = (365)(24)(60)(60) s =
3.15 x 107 s. So it’s speed is

_C’_27rR_9.42><1011m
U_T_ T 3.15x 107s

=2.99 x 10*m/s

So the centripetal acceleration is given by

2
() 4rR (2,99 x 10'm/s)?
R R 72  150x10"m

Problem 2.15

= 5.97 x 10 %m//s”

In problem 2.14 we actually calculated the centripetal acceleration in terms of the
radius of the orbit and the period of the orbit. That result, a = 47?R/72, is true for all
the planets. This result does assume that all planets have circular orbits, but most orbits
are elliptical, so the radius we use is the average distance of the planet to the sun. This
was referred to as R in the lecture supplement for 9/17/99. Elliptical orbits will be
discussed later in the course.

(a) Here is a table of information found by asking “what is the distance to out planets?”
on the web site http://ask.com and by using the formula above for a.
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Planets | Mean Radius (m) | Period (s) | Centripetal Acceleration (m/s?)
Mercury 5.79x10° | 7.60x10° 3.96x102
Venus 1.08x10" | 1.94x10° 1.13x10*
Earth 1.50x 10" | 3.16x107 5.93x1073
Mars 2.28x 10" | 5.94x107 2.55x1073
Jupiter 7.78x10M1 | 3.74x108 2.20x107*
Saturn 1.43x10% | 9.29x10% 6.54x107°
Uranus 2.87x10% | 2.65%x10° 1.61x107°
Neptune 4.50x10* | 5.20x10° 6.57x10°°
Pluto 5.91x10'% | 7.84x10° 3.80x10°°

(b) Below is a log-log plot of the centripetal acceleration versus the orbit radius. The
dots show the data points, and the lines connect consecutive points. The axes of your
plot may be different depending on the units chosen, but the slope of the curve should
be the same. ( I expressed the radii in units of 10'© m and the acceleration in units of
107% m/s?. )

Acceleration versus Radius for the Planets —— Iog10 Iog10 Plot
5 T T T T

Mercu
45 v

al Acceleration/ 107® m/s® )
w
w wn IN
T T T

N
&)
T

Ioglo ( Centripet:
N
T

05 ‘ ‘ ‘ , Pluto

0.5 1 1.5 2 10 25 3
Iog10 ( Radius of Orbit Around Sun/ 10" m)

Later you’ll learn how to determine the best curve for a set of data points, but these
points seem to lie on such a straight line that we will just assume that the relationship is
linear. Now we will use the slope between any two points to make a guess about the true

slope. For my guess, I used the points for Mercury and Pluto: slope & ﬁ%% R~
—2.00.
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You should notice that all the planets, independent of their mass, lie on this curve.
This indicates a relationship between radius and acceleration: loga = —2.00log R + C
which implies that a = K/R?, where C' and K are constants independent of the mass of
the planet. ( As was shown in lecture. ) Notice that the expression from problem 2.14
related a, 7, and R, but this expression is independent of 7 indicating that there must be
additional relationships between 7 and R.

Here are a few lines of code that will produce graphs similar to the one above. First
you need to find Mathlab. Log onto an Athena workstation and either (1) choose the
‘Numerical /Math’ option from the top, then choose ‘Analysis and Plotting’ and ‘MAT-
LAB’ or (2) at the command line type ‘add matlab; matlab’. Then at the prompt, which
should look like ‘>>’, type the following lines.
radii = [6.79, 10.80, 15.00, 22.80, 77.80, 143.00, 287.00, 450.00, 591.00]
acc = [39600, 11300, 5930, 2550, 220, 65.4, 16.1, 6.57, 3.80]

plot( loglO(radii), loglO(acc), ’o’, loglO(radii), loglO(acc), ’-’ )

Problem 2.16

Let w be the speed of the wind blowing from A to B; v be the speed of the plane
measured relative to the air; and d be the distance from A to B.

For the trip from A to B, the ground speed (speed of the plane measured relative to
the ground) would be

v+ w

and the time it would take to travel that distance would be

d

v+ w

tasp =

For the trip from B to A, the ground speed would be

and the time of flight would be

d
tpsa =
Vv —w

At this point you should notice that we could make tg_, 4 be very large by making w ~ v,
which already indicates that the round trip with wind will be longer.

The total time of flight would be

1 1 2d 1
thtﬁﬁt%ﬁd( 4 ):— bt

v+w v —w v \1—w?/v?
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The travel time without the wind (w = 0) is
to = Qd/’U

so we can write ¢, as

1
fo = To (1—w2/v2>

(=) >

S0 ty, > tp, and the round trip with wind is longer. But for |w| > v

(=) <

which would make ¢,, < 0! So clearly we should be careful here.

For |w| < v,

The special points w = v cause problems: the above expression for t,, becomes
infinite. In fact for w = v the ground speed for the B to A portion is v —w = 0, indicating
that the plane will never be able to leave point B. This means that someone standing
on the ground at B will see the plane floating still in the air. ( Where as a bird in the
wind will see the plane as moving forward. ) So all considerations of the trip from B
to A are irrelevant: the plane never makes that portion of the trip. This is revealed in
the expression for tp_, 4 which becomes infinite for w = v. So the analysis above breaks
down: we can not talk about the round trip because it doesn’t occur. In fact for w > v
the ground speed is v — w < 0, and the plane continues to be blown further in the A to
B direction.

If the wind were to blow from B to A instead, the above results would work by
considering w < 0. And when w = —v (when the wind blows from B to A with speed v),
the ground speed from A to B would be v + w = 0. The plane would never even begin
its trip since it couldn’t leave A. And for w < —v the plane immediately is blown further
away from B. So for this case the plane never even completes the first half of the round
trip.
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