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acancy (NV) defect in diamond has shown considerable

promise in the field of small scale magnetometry due to its high local-
ization and its retention of favorable optical properties in ambient condi-
tions. Present methods of magnetometry with the NV center demonstrate
high sensitivity to fields aligned with the defect axis; however, with most
present methods transverse fields are not directly measurable. The all-
optical method of NV magnetometry provides a means to detect transverse
fields by monitoring changes in the overall fluorescence profile. In this work
the all-optical method is extended to ensembles of non-interacting NV cen-
ters. By establishing an external bias field aligned with the (1, 1, 1) axis
it is found that the magnitude of an unknown transverse field can be un-
ambiguously identified through the measurement of the signal curvature.
The angular orientation can be determined up to a two-fold degeneracy by
observing the change in signal curvature produced when the bias field is
shifted off-axis.
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of magnetic fields at small scales can be ben-

eficial for a variety of scientific endeavors. For example, measuring the
magnetic field produced by nuclear spins of a protein with high spatial res-
olution can yield information regarding its molecular structure[1–3], and
dynamic imaging can reveal the manner in which proteins fold and un-
fold[4–8]. Furthermore, intracellular processes and mechanisms can be bet-
ter studied by monitoring the distribution and evolution of magnetic mo-
ments within the cell[9–14], with better spatial resolution yielding better
understanding. The currently used methods of small scale magnetometry,
superconducting quantum interference devices[15–17], atomic vapor based
magnetometry[18,19], and magnetic resonance force microscopy[20–22], are
either not capable of resolving changes on a nanometer scale, or require dif-
ficult operational procedures, such cryogenic temperatures or large sample
sizes, which are not suitable in certain contexts. Thus for high precision mea-
surements that are to be performed in ambient conditions, a new method of
magnetometry is necessary.

A suitable candidate is the Nitrogen-Vacancy defect in diamond, which
promises nanoscale precision even when operated at room temperature[23,
24]. A NV center occurs when a nitrogen substitutional defect is located
next to a vacancy in the lattice structure, which can occur naturally or can
be induced through laboratory methods[25–29]. Of interest to this project
is the NV− center1, in which an additional electron is located within the
defect site.

The NV center is known as a color center because it will fluoresce within
the visible spectrum when optically excited. As will be discussed in more
detail, the intensity of the emitted light is intimately related to the spin
state of the NV center, and because quantum spins interact with magnetic
fields in a well-understood manner, by monitoring changes in the intensity
of the NV center fluorescence emission, the local magnetic field profile can
be reconstructed.

In this work, we develop a method of NV magnetometry known as the all-
optical method[30, 31] analytically and numerically, and ultimately extend
this model to include the effect of ensembles of NV centers rather than
a single defect center. In Section II we introduce the relevant features of
the NV center, and present the motivation for the all-optical technique as
a consequence of the Zeeman interactions between the NV spin structure
and the external magnetic field. We introduce the model equations as well.
In Section III we develop the model equations in more detail and modify
them to be more convenient for computational analysis. Finally, section
IV presents the results of the solved model equations and discusses the
implications of the results on future experimental implementations of the
all-optical method of NV magnetometry.

1 Henceforth, the NV− center will be referred to simply as the NV center
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Figure 1: The seven level model in the absence of an external magnetic field, consist-
ing of the ground state and excited state triplets and a metastable singlet.
Only spin-conserving radiative transitions and non-radiative transitions to
the metastable state are considered.
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1 triplet. There is a zero-field
of 2.87 GHz due to spin-spin interactions that

places the |0〉 state below the |±〉 states. This triplet ground state can be
excited with 532 nm wavelength laser light into an excited triplet state with
1.42 GHz zero-field splitting2. The subsequent relaxation process will yield
an amount of photons dependent upon the relaxation path.

The dominant mode of relaxation is through spin-conserving transitions[32,
33]; for example, a state belonging to the excited state manifold will tran-
sition to its equivalent spin state in the ground state manifold, emitting a
photon in the process to satisfy overall energy conservation. However, the
total number of photons emitted after repeated optical stimulations is highly
dependent upon the initial polarization of the state[34, 35]. This is due to
the finite probability that the |

3

±〉 states will transition to the |0〉 state via
a metastable singlet state , a process known as intersystem crossing (ISC).
This transition excites phonons in place of photons, so on average the ob-
served number of photons emitted by the |±〉 states is less than that of the
|0〉 state. Fig. 1 gives a visual representation to the electronic and spin level
structure of the NV defect.

2 It is the preservation of this unique spin level structure at room temperatures that allows NV
magnetometry to be operable in ambient conditions

3 Note: the opposite phenomenon, the excited |0〉 state transitioning to a |±〉 state via the
metastable state, is negligible compared to the probability of radiative decay.
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Figure 2: A depiction of the Zeeman splitting of the triplet ground state.
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wn as the Zeeman Effect, where spins aligned with the mag-
netic field will occupy a lower energy state than spins anti-aligned to it. In
particular for the spin-1 triplet state of the NV defect and a magnetic field
aligned with the defect axis, the energy of the |+〉 state is shifted downward
by the amount µgB ≈ (11.6 eV/T) ·B, the energy of the |−〉 is shifted upward
by the same amount and the energy of the |0〉 state is unaffected, as can be
seen in Fig. 2. Experimentally, this splitting can be observed by performing
microwave (MW) sweeps while optically exciting the NV center and observ-
ing the PL decrease when the MW is resonant with the |0〉 → |±〉 transition
at the applied magnetic field[36, 37].

Monitoring the electron spin resonance (ESR) spectra of the NV center
provides a method of extracting the magnitude of the external magnetic
field projected onto the defect axis due to the known relation between the
energy splitting and the external magnetic field; however, this detection
method is insensitive to transverse fields. Similarly, another method of NV
magnetometry is the use of a Ramsey-type pulse sequence for DC fields
and Spin-echo[38–41] measurements for AC fields. These methods consists
of a π

2 resonant MW pulse followed by a period of free evolution in which
the |±〉 states will pick up a phase due to their interaction with the external
magnetic field, followed by a final π2 MW pulse which projects the state back
onto the original axis. This final pulse effectively translates the phase differ-
ence obtained during the period of free evolution (which is proportional to
the magnetic field) to a measurable difference in spin state populations. An
additional π pulse is inserted in the middle of the echo sequence that will
"flip" the state and the direction of the spin evolution, allowing the phase
difference to continue to increase even as the external field magnetic field
changes sign. However, these pulse sequences will be insensitive to trans-
verse fields as well. Therefore, a third method of NV magnetometry, known
as the all-optical method, is now introduced that is capable of directly de-
tecting the presence of a transverse magnetic field.
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Figure 3: The normalized PL intensity as a function of the transverse magnetic field
amplitude. The parallel projection onto the defect axis is held constant at
Bz = .03T.
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MW driving, an aligned magnetic
cause no changes in the photoluminescence (PL) intensity as its

magnitude is increased; the same, however, is not true for transverse fields.
In strong transverse fields, the ms basis with respect to the spin axis is not a
good eigenbasis in which to analyze the system; instead, an eigenbasis with
respect to the axis of the magnetic field would serve better[42]. Eigenstates
in this new basis can be expressed as superpositions of the previous ms
states and as a consequence there will be a nonzero overlap between the |0〉
in the new basis and the |ms = ±〉 of the old basis. Through this effect, the
contrast in photons emitted by the |0〉 and the |±〉 states is reduced; however
the net intensity of the photon light is also reduced due to the larger popu-
lation of |±〉 states (see Fig. 3). While this behavior is intuitive for the case
of a strong transverse field, this reduction in PL intensity will be manifested
even in the regime of small transverse fields as long as the transverse field
is nonzero. It may therefore be possible to detect the presence of transverse
fields by monitoring a change in the intensity of emitted light.

For a single NV center, this approach is strictly limited to the detection
of transverse fields. However for ensembles of NV centers this limitation
is removed. The diamond lattice has a face-centered cubic structure; corre-
spondingly, there are four possible spatial orientations for the NV defect[43].
An external magnetic field parallel to one NV center will be at an angle to
another NV center within the sample. Therefore, when considering ensem-
bles of NV centers, the all-optical method of magnetometry can be used for
the successful detection of magnetic fields of any orientation.

An ongoing field of research is the use of the NV center to make precision
measurements of a small-scale magnetic field; however, with the increased
precision comes an expected decrease in simplicity of experimental design.
The methods developed in this thesis project aim to accomplish the oppo-
site: a relatively quick and simple method of detecting small-scale magnetic
fields at the expense of decreased precision in the measurement. The results
of this project can be used to develop a tool for performing fast measure-
ments when the ultimate sensitivity is not the primary concern (although
nanoscale precision is still obtainable, even with such an "imprecise" device),
or an apparatus that can be used in tabletop demonstrations in either labora-
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to an exactly-solvable unperturbed Hamiltonian, as is the case with the inter-
action of an external magnetic field with the NV defect. The total eigenstates
and eigenvalues are then expanded in a power series around the small per-
turbation and truncated at an appropriate order. That is to say, we begin
with an unperturbed Hamiltonian H0 with unperturbed eigenstates

∣∣n0
such that

H n0 = E0 n0 (1

〉
0 n

is added to

∣∣
the

〉∣ )

A small perturbation original

∣∣ 〉∣
Hamiltonian such that

Htot = H0 + δH (2)

where δH is small compared to H0. The eigenvalues then evolve according
to the equation:

|2
En E0n

〈 | m0 δH n0
= + n0

∣
n
〉∣ 0 +

∑ 〈 ∣∣
δH
∣ ∣ ∣∣ 〉∣∣ + . . . (3)

E0n − E0mm=n

Similarly, the eigenstates will evolve according to the equation:

m0 δH n0
|n〉 =

∣ 〉∣∣n0 +
m

∑
+ . . . (4)

E0n − E0m=n

〈 ∣∣ ∣∣ 〉

These results will be used in the next section to calculate the Zeeman inter-
action for the NV defect.
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of the external magnetic field (denoted as |i〉 ′) can be expressed as a linear
combination of the original states[30]:

7

|i〉 ′ =
∑

αij(B) |j〉 (5)
j=1

where the coefficients αij(B) will be determined via Perturbation Theory
(PT) in the following section and are functions of the external magnetic
field.

Transition rates are represented as kij for the transition |i〉 → |j〉. In a
similar manner to Eq. 5, the new relaxation rates (denoted as kij

′ ) will evolve
as combinations of the zero-field transition rates[30]:

7

kij
′ =

∑
|αip|

2|α 2
jq| kpq (6)

p,q=1

6

6
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In the most general case, the time evolution of the spin state populations
can be calculated with the classical rate equations[30]:

7
dni =
dt

∑
kji
′ nj − kij

′ ni (7)
j=1

However, for the purposes of the all-optical measurement approach, the
above equation will be solved in the steady-state condition with d

dt → 0.
Physically, this corresponds to an experimental setup in which the NV cen-
ter is optically excited long enough for transient behavior to diminish, and
then photon collection will occur while the NV center is continuously illu-
minated such that the steady-state condition is maintained for the entirety
of the measurement period. Thus, the equation to be solved is:

7

0 =
i

∑
kji
′ n̄j − kij

′ n̄i (8)
,j=1

where the spin state populations are denoted as n̄i to indicate they are the
steady-state populations. The spin populations represent the probabilities
for a single NV center to be in the specified spin state, thus the following
normalization condition is imposed on {n̄i}[30]:

7

n̄i = 1 (9)
i

∑
=1

Recall that the decay of the excited state manifold to the ground state
manifold via the metastable state excites phonon production rather than
photon emission, thus the only radiative decays are those from the excited
state manifold directly to the ground state manifold. Thus the rate of total
radiative decay, R, is defined with the following equation[30]:

6

R = η
∑∑3

kij
′ n̄i (10)

i=4 j=1

where η represents the collection efficiency of the photon detector.
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{|1 , |2 , |3 }, the excited

e
model

t
the complete Hilbert space will be decomposed

subspaces

ails

- the ground state manifold, with the basis
〉 〉 〉 state manifold, with the basis {|4〉 , |5〉 , |6〉}, and the

metastable singlet {|7〉}. In this manner the Hamiltonians of each subspace
may be considered independently as well, as the total Hamiltonian will be
of simple block-diagonal form. This will simplify the calculations, because
the singlet will exhibit no Zeeman interactions, and the evolution of the
excited state manifold due to the external magnetic field will be analogous
to that of the ground state manifold. The dimensionality of the problem can
thus be reduced from 7 to 3 by limiting the analysis to the calculation of the
Zeeman interactions of the ground state manifold only. Furthermore, the
subspace independence implies that there will be no state mixing between
subspaces, and as such the amount of coefficients αij is greatly reduced.
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Defining the quantization axis to lie along the NV defect axis, the ground
state Hamiltonian is thus composed of two terms4:

Hgs = hDgsS
2
z − µgB~ · ~S (11)

where only the zero-field splitting of the ground state manifold and the
Zeeman interaction with the external magnetic field are considered. Here,
h is the Planck constant, µ is the Bohr magneton and Dgs = 2.87GHz. The
analogous excited state Hamiltonian can be found be replacing Dgs with
Des = 1.42GHz.

When considering a single NV center, the transverse field can be taken to
lie along the x-axis without loss of generality. However, we are interested
in performing our analysis in the most general way and in particular in
extending it to ensemble of NVs, oriented along the four different crystal
axes. We thus initially retain the most general form of the Hamiltonian. This
allows us to show that even in the most general case the problem can still be
reduced to a 2-parameter model, defined by a longitudinal and transverse
magnetic field. Thus, the ground state Hamiltonian is:

Hgs = hDgsS
2
z − µgBzSz − µgBxSx − µgBySy (12)

3.1

For small

Calculation

transverse

of αij

fields

via Non-degener

(µgB⊥hD � 1)

ate

the

TIPT

effect of the transverse field on
gs

the spin eigenstates can be calculated via Time Independent Perturbation
Theory. The total Hamiltonian of the system is decomposed as follows:

Htot = H0 + δH (13)

with the unperturbed and perturbing Hamiltonians defined as

H0 = Hgs = hDgsS
2
z − µgBzSz

δH = −µgBxSx − µgBySy (14)

The unperturbed eigenvalues are the usual Sz eigenvalues |−〉, |0〉, |+〉.
The presence of a finite Bz breaks the degeneracy of the states |±〉 and thus

Non-degenerate PT can be used. Applying Eq. 3 with the given definitions
of H0 and δH the new energies are found to be:

2(µg) |Bx + iBy|
2

E+ = hDgs − µgBz + + . . .
2 (hDgs − µgBz)

2(µg) |B − iB |2 2
x y (µg) |Bx + iBy|

2

E0 = − − + . . .
2 (hDgs − µgBz) 2 (hDgs + µgBz)

2(µg) |Bx − iBy|
2

E− = hDgs + µgBz + + . . . (15)
2 (hDgs + µgBz)

4 For refer ence, the spin-1 operators, in the Sz eigenbasis, are:
−i 0 √1 0 0 0 1 0 0 2
√

S ,√1x  0 √1

 2

=   Sy =


,

2 2

 i √ 0
2

√−i

 
2

0 √1 0 0 √i 0


Sz =


0

2

  0 0

0 0 −1


2





and applying Eq. 4 the new eigenstates are found to be:

model details 13

µg(B
|+〉 x + iBy)

=
∣∣
+0
〉
− √

2 (hDgs − µgBz)

µg(B − iB )

∣∣
00
〉
+ . . .

)
|0〉 x y µg(Bx + iBy

=

∣ ∣∣∣∣00〉+ √ +0 + −0 + . . .
2 (hDgs − µgBz)

∣
(hDgs + µgBz)

∣
−

∣ 〉 ∣ 〉∣ √

| 〉 =

∣
∣∣∣

2

−0
〉 µg(Bx − iBy)
− √ 00 + . . . (16)

2 (hDgs + µgBz)

∣ 〉
Generally, the new eigenstates should

∣∣
be renormalized, however in this

case the perturbation will be considered to be sufficiently small that the
eigenvectors remain approximately normalized. The physical quantities
of interest for this system are the energies of the states Ei and the norm-
squared coefficients |αij|

2. From the above expressions it is clear that both
quantities depend on the magnitude of the transverse field component (B2⊥ ≡
B2x +B

2
y) without regard for the orientation of the transverse field in the x-y

plane. Therefore, for every NV center to be considered, the relevant field
quantities are B and B and all formulas derived shall be written in terms‖ ⊥
of these 2 quantities such that the generalization to ensembles is manifestly
visible.

From Eq. 16, the coefficients αij can be easily identified, recalling the
mapping of |0〉 → |1〉 , |+〉 → |2〉 , |−〉 → |3〉. For completeness all non-zero
αij coefficients are listed here:

α11 = 1 α44 = 1

µgB
α12 = ⊥ µgB

√ α45 = ⊥

2

α

(
hDgs − µgB‖

µgB

) √
2
(
hDes − µgB‖

)
13 = ⊥√

2
(
hDgs + µgB‖

µgB
α = − ⊥

) µgB
α46 = √

2
( ⊥

hDes + µgB‖

( ) ( µgB
21 α54 = − ⊥

)
√
2 hDgs − µgB

√
2 hD B‖ es − µg ‖

α22 = 1 α55 = 1

)

( µgB µg
α31 = − ⊥ B

√ α64 = − ⊥

2 hDgs + µgB
√
2 hD‖ es + µgB‖

α33 = 1

)
α66 = 1

( )

α77 = 1 (17)

3.2

In this

Numerical

model only

Details

spin-conser

of the T

ving

ransition

radiativ

Rates

e transitions and ISC transitions
via the metastable singlet state are considered. The metastable state is as-
sumed to only couple with the ground state |0〉 and the excited state |±〉.
Furthermore, the transition rates depend only on the absolute value of ms,
so transition rates involving the |+〉 and |−〉 states will be equal. Table 1
shows the exact numerical values used in developing the results presented
in this thesis[32].

Excitation rates (kji, i ∈ {1, 2, 3}, j ∈ {4, 5, 6}) can be related to the corre-
sponding relaxation rates with a constant of proportionality Γij known as
the optical pumping parameter for that transition. In general Γij is different
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Transition Rate [MHz]

k41 77

k52 77

k63 77

k57 30

k67 30

k71 3.3

Table 1: The rate values used in the calculations presented in this thesis. All transi-
tion rates not shown are taken to be 0.

for the different radiative decay processes. However, in this model only spin-
conserving radiative transitions are considered, and as can be seen in Table
1 these transition rates are all equal. The laser excitation process can sim-
ilarly be considered independent of the initial spin polarization, and thus
the ratio Γij = kji/kij ≡ Γ is a constant of the experiment.

T

3.3

o simplify

Reformulation

the analysis,

of the Model

it is desired to r
(Eqs.

Equations as

efor

a

mulate

Linear Matrix

the model equations
6 - 10) as matrix equations in order to reduce the overall

System

number of
equations to be solved directly. The evolution of the basis states (Eq. 5)
does not aim to benefit from any reformulation, as the new basis states have
already been calculated via Perturbation Theory and can thus be directly
operated on in place of the original basis states. Therefore we began with
Eq. 6.

The matrix A is defined such that:

A ≡ |αij|
2 |i〉 〈j| (18)

Furthermore, the matrices K and K ′ are defined such that:

K ≡ kij |i〉 〈j|
K ′ ≡ kij

′ |i〉 〈j| (19)

With these definitions, it is clear to see that Eq. 6 can be reformulated as:

K ′ = AKAᵀ (20)

It should be noted that the above equation is valid for any choice of A; how-
ever, from Eq. 17 it can be seen the A derived for this system is symmetric,
and as such A and Aᵀ will be equivalent. In fact, when only considering the
first order correction to the basis states obtained via Perturbation Theory
(Degenerate or Non-degenerate), the hermiticity of the Hamiltonian implies
A will be always symmetric.

In reformulating Eq. 8 we define the vector |n〉 such that each element
of the vector is the steady-state probability n̄i as defined in Eq. 9. Upon
inspection of Eq. 8, it is clear that there are two types of terms present: the
first is a sum of the possible decays into the spin state of interest, which is
dependent upon the other spin populations, while the second is a sum of
all the possible decays out of the spin state of interest and is independent
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of the populations of the other spin states. With this recognized, it follows

15

that Eq. 8 can be alternatively expressed as5:

~0 =
(
K ′ − Diag

( ᵀ
K ′ |I〉

=

))
|n〉

M |n〉 (21)

The first term in M represents the decays into a spin state, while the second
term represents the decays out of a spin state. In this representation, solving
for the steady-state spin populations is recast as the problem to find the
nullspace of M, which is a well-studied problem6.

With this approach, the normalization condition of n~ is alternatively ex-
pressed as:

〈n|1〉 = 1 (22)

To recast Eq. 10 into a matrix equation, for brevity in the final result the
vector |G〉 and the matrix E are defined as:

|G〉 ≡ |1〉+ |2〉+ |3〉
E ≡ |4〉 〈4|+ |5〉 〈5|+ |6〉 〈6| (23)

It is clear that the total radiative rate can then be expressed as:

R = η 〈n|EK ′ |G〉 (24)

When

3.4 Extension

considering

to Ensembles

an ensemble of NV centers, there exists a potential ambi-
guity in distinguishing angular and gradient effects in the total observed PL
signal. A more complete analysis of the system would allow for a spatially-
varying external field; however, for simplicity the external field will be as-
sumed to be slowly varying over the ensemble region (V∇|B|

1Bave
≪ ). This

work will focus on the leading order term only, but corrections due to small
spatial variations can be added in a Taylor expansion of the signal calcula-
tion.

As discussed in the previous section, the response of the NV center to an
external magnetic field can always be treated as a 2-dimensional problem
with the relevant parameters being B and B , the parallel and transverse‖ ⊥
projections of the external field onto the defect axis respectively. In calcu-
lating B and B , however, the full‖ ⊥ 3-dimensionality of the diamond lattice
must be maintained. Symmetry considerations dictate the diamond lattice
to be tetrahedral. Defining the coordinate axes such that ẑ lies along one of
the bond axes (hereby denoted as P̂ for Principle Axis7) and x̂ lies along the
transverse field direction, it is straightforward to calculate the parallel and
perpendicular projections of B~ on the other 3 bond axes (hereby denoted
as 8Q̂, R̂, Ŝ ); the results are shown in Table 2. In calculating the results of
Table 2, the following angles are defined: θ0 ≈ 109.5◦ is the bond angle, β is
the angle between the transverse axis projection Q̂ and the transverse field⊥

5 Notation: ~0 is the sev∑en dimensional all-zeros vector (0 0 0 0 0 0 0), |I〉 is the seven dimen-
sional all-ones vector |i〉, Diag(a~) defines the matrix D such that Dij = aiδij, where δij
is the Kronecker Delta.

6 Note that with this representation the transient case becomes similarly recast into a well-
studied form: n~̇ =Mn~

7 Note: All such references to “parallel” and “transverse” projections should be understood to
be taken with respect to the Principle Axis

8 Alternatively, one can consider the representations P̂ → (111), Q̂ → (11̄1̄), R̂ → (11¯ 1̄),
Ŝ→ (1̄11¯ )



model details 16

Figure 4: (Left) The tetrahedral geometry to be considered. The tetrahedral angle
is 109.5◦ and ρ is the angle between B~ and ẑ. (Right) The tetrahedral
geometry projected into the transverse plane. The angle of symmetry is
120◦ and β is the offset of the tetrahedron with the x-axis, which is defined
along the transverse field component.

|B | |B |‖ ⊥

P̂ Bz Bx

Q̂ Bx sin θ 2
0 cosβ+Bz cos θ0

√
B − (Bx sin θ0 cosβ+Bz cos θ0)2

R̂ Bx sin θ0 cos(β+ϕ0) +Bz cos θ0
√
B2 − (B 2√ x sin θ0 cos(β+ϕ0) +Bz cos θ0)

Ŝ Bx sin θ0 cos(β−ϕ0) +Bz cos θ0 B2 − (Bx sin θ0 cos(β−ϕ0) +Bz cos θ0)2

Table 2: The parallel and perpendicular projections of an external magnetic field
B~ = Bxx̂+Bzẑ onto the 4 possible defect axes. The angles θ0, β and ϕ0 are
defined in the text.

direction, ϕ0 = 120◦ is the angular spacing of the three axes projections
in the x-y plane. Fig. 4 provides a visual representation of this coordinate
configuration.

As can be clearly seen in Table 2, at most 3 tetrahedral axes can be consid-
ered symmetrically, in which the parallel and perpendicular projections of
the external field will be equal. In this coordinate system this occurs when
Bx = 0. These coordinates were chosen to make this feature manifest but
no generality was lost in this coordinate definition - there does not exist an
external field orientation in which the parallel or perpendicular projections
onto every tetrahedral axis are identical. The most symmetric configuration
will always be when the external field is perfectly aligned with a tetrahedral
axis.

With the projections defined, the total signal observed is a simple average
over the 4 possible orientations with the assumption that the interactions
between neighboring NV centers can be neglected. Thus:

S̄
1

=
∑

ˆR(Bn, ˆBn) (25)
4 ‖ ⊥
n̂

where n̂ = P̂, Q̂, R̂, Ŝ.
Due to the trifold rotational symmetry of this geometry, a periodic signal

profile develops in the presence of a finite transverse field, as can be seen
in Fig. 5. Interestingly, in the quasi-parallel regime, in which Bx � Bz,
the signal peaks occur when the tetrahedral axes are anti-aligned with the
transverse field. This is due to the bond angle being obtuse, so in the quasi-
parallel regime a transverse field anti-aligned with a transverse tetrahedral



model details 17

Figure 5: Rotation profiles of the observed signal within the x-y plane. ρ, the angle
between B~ and ẑ, increases from top to bottom from 20◦ to 85◦ to 90◦. For
all, |B| = .03T and Γ is set to 10. The intensities are normalized to the
ρ = 0◦ intensities.

axis has a larger parallel projection onto that axis than when aligned with it.
As the system is rotated into the quasi-transverse regime, in which Bx � Bz,
the aligned configurations transition from local minima to local maxima as
the minima shift towards the midpoint between the aligned and anti-aligned
configurations. Finally, for completely transverse fields the aligned and anti-
aligned configurations are perfectly symmetric, as the vector configuration
is such that each ϕ0

2 rotation maps ~B into its vertical image. That is to
say, the angles formed by ~B(β) and ~B(β + ϕ0 )2 with the tetrahedral axes
define vertical, congruent pairs. Note that this is always true for B , but⊥
the symmetry is broken by the presence of a finite Bz. As Bz is taken to 0
the vertical symmetry becomes realized. A full 4π rotation map is shown in
Fig. 6. In this figure, the discrete rotational symmetry of the NV tetrahedron
is clearly visible with the bright peaks within the middle of the plot.
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Figure 6: A full 4π rotation map of the NV tetrahedron. ρ is the polar angle of the
external magnetic field and β is the azimuthal angle. |B| is .01T and Γ is
set to 10.
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With this in mind, for the analysis that follows, the total magnetic field
will be comprised of two terms: the known bias field and the unknown
perturbing field, ie. B~ = B~ 0 + ~b. The goal is to calculate ~b in terms of
B~ 0 (a known parameter) and observations on B~ . To do this, the problem
will be broken up into 2 parts: developing a method to determine b and‖
developing a method to determine ~b . With this information the entire⊥
vector ~b can be reconstructed.

It is predicted that near the Level Avoided Crossing (LAC) regions the PL

4.1

intensity

Parallel

will

Fields

be highly responsive to small, transverse field perturbations,
as can be seen in Fig. 7. The LAC regions are found when Bz = hDgs/µg,
hDes/µg, or Bz ≈ .103T, .051T respectively. It is interesting to note that with
finite B , regions appear which are symmetric under small variations in⊥ 3

Bz - the 2 LAC regions and the midpoint between them9.
It can be imagined that a biasing external field is established such that the

NV center is placed within one of these 3 symmetric regions. Then, being
regions of high sensitivity, the magnitude of the parallel projection of the
perturbing field can be determined from the difference in the observed sig-

9 Note thatBz = 0 is not considered in this analysis although it is a location where ∂S
∂B vanishes

and, when including the negative projections, indeed forms a symmetry point. The
z

reason for
its omission is that the curvature is poor at that location and thus from a practical consideration
it is eliminated as a possibility.
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Figure 7: A demonstration of the increased sensitivity of the NV center to perturbing
transverse fields around the LAC regions ∼ .05T and ∼ .1T. On the left is
the single NV case, while on the right the full ensemble is considered.
Circled are the 3 symmetry points about which a perturbing parallel field
could be readily identified with the methods discussed in the text. Γ = 10

in both cases. The small deviations that occur near the LAC points are due
to divergences in the coefficients αij that develop as a manifestation of the
Perturbation Theory and are not physical.

nal and the signal predicted at the symmetry point. Only the magnitude of
the parallel perturbation can be immediately determined from the observed
signal due to the symmetry of the region; however, the sign of the perturba-
tion can be obtained by shifting the biasing field off the symmetry point by
a small amount and observing the change in the signal.

Mathematically, this is to say that at the symmetry point ∂S
∂Bz

= 0 but
elsewhere ∂S

∂Bz
6= 0 and thus has a sign. Therefore by measuring the sign of

∂S S∂B , along with the direct measurement of the parallel perturbation can
be

z

determined uniquely. This method of determining the parallel projection
of the perturbing field will be referred to as the symmetric approach.

A claim might be made to use the regions of maximum slope rather than
minimum slope as the biasing points as these regions will exhibit the largest
sensitivity to parallel variations. However, the curvature profile of the signal
is a function of the transverse perturbing field and so the specific location
of maximum slope is not known a priori. The location of the local minima
is, as it will always occur at the LAC point. Therefore it is recommended to
use one of these extrema points as the bias points as they will be symmetric
with any value of Bx.

For small perturbations, an expansion can be performed around the sym-
metry points:

∂2S
S(Bz) ≈ S(pi) +

∂2Bz

∣∣∣∣
pi

(Bz − pi)
2

2
+
∂4S

∂4Bz

∣∣∣∣
pi

(Bz − pi)
4

+ . . . (26)
24

where pi denotes a symmetry point: ∼ .05T, ∼ .075T, or ∼ .1T. Here only even
derivatives are nonzero due to symmetry considerations. For sufficiently
small perturbations Bz−pi the higher order terms can be neglected and the
perturbation can be solved for directly:

∂2S
S(Bz) = S(pi) +

∂2Bz

∣∣∣∣
pi

(Bz − pi)
2

2

∂S ∂2S
=

∂Bz ∂2Bz

∣∣∣∣
pi

(Bz − pi)
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Therefore:

20

∂S
bz =

∂Bz

(
∂2S

∂2Bz

∣∣∣∣
pi

)−1

≈ ∆S ∂

∆Bz

(
2S

∂2Bz

∣∣∣∣
pi

)−1

(27)

where bz ≡ Bz − pi. Generally ∂2S function
∂2

is a of B and the optical
Bz

p
⊥

i

pumping parameter Γ and can be extracted

∣∣
by curve-fitting a signal profile

such as that shown in Fig. 7. Unfortunately

∣∣
, Bx is not a fully known quantity,

as it will contain a perturbation as well. It is yet to be seen if there is

an optimal Γ value which minimizes the dependence of ∂2S
2

∣∣∣∣ on Bx, in
∂ Bz

pi
which case the dependence of the signal curvature on Bx can be neglected
to good approximation and the symmetric approach can be applied in all
experimental situations. An alternative approach would be to determine
Bx before attempting to quantify bz; a method of measuring Bx will be
discussed later in the section.

In Eq. 27 ∆S
∆B is a measurable quantity; however by direct inspection

z

of Fig. 7 it is clear that ∂S
∂B is degenerate, but the locations of equal ∂S

∂B

are locations of unequal
z

S for |bz| < |pi|. Therefore it is recommended to
z

observe the signal as well as the response of the signal to small changes in
B0z to determine the perturbation bz.

It is important to recall the presence of the other NV modes as a strong
magnetic field parallel to one axis will be strongly transverse to the other
axes. This effect can be seen in Fig. 7 for the ensemble case, where even in
the absence of a finite Bx there is a sharp drop in PL intensity. This is a
manifestation of the effect seen in Fig. 3 in which an increasing transverse
field drops the PL intensity. However, even in the ensemble case the LAC re-
gions still demonstrate considerable sensitivity to transverse perturbations.
Furthermore, in this model the number of total NV centers used is a simple
multiplicative factor in the signal calculation, so with enough NV centers
the signal can always be made sufficiently high to be detectable. As such,
even in the case of ensembles the symmetric approach will be applicable.

A potential problem arises, however, by biasing the NV ensemble around
the symmetric regions, as the transverse fields experienced by the other
NV modes are of comparable strength to the zero-field splitting of the spin
states. This model was derived with perturbative methods assuming trans-
verse fields will be small, and so selecting such strong transverse fields may
interfere with the perturbative approximation. Therefore only the excited
state LAC region will be used in the remainder of this thesis with the un-
derstanding that more accurate results can be obtained by more elegant
approximation methods, such as expanding around the LAC regions, for
example.

4.2 Transverse Fields

4.2.1 β

In considering

Rotations

transverse perturbations it is useful to properly define the
geometry being considered. Fig. 8 demonstrates the most general type of
perturbing field. In the figure, Ψ is the angle between the perturbing field
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Figure 8: The geometry of the perturbing magnetic field. Ψ is the angle between the
perturbing field and the z-axis, and Ω is the angle between the perturbing
field and the x-axis.

and the z-axis, and Ω is the angle between the perturbing field and the x-
axis. To simplify the analysis, in the presence of a perturbing field the x-axis
will be redefined to lie along the transverse projection of the total magnetic
field. This rotation can be alternatively viewed as a change of β, the angle
between the tetrahedral axes and the x-axis.

An ambiguity exists when determining the cause of an observed β-shift
as both the magnitude of the perturbing field and will orientation will de-
termine the β-shift. Indeed, from simple geometry:

b sin
tan(δβ) = ⊥ Ω

(28)
B0 + b cos⊥ ⊥ Ω

Or after rearrangement:

B0 sin(δβ)
b = ⊥
⊥ (29)

sin(Ω− δβ)

Therefore, with knowledge of Ω and the change in β b can be extracted,
0

⊥
or vice versa. Note the case where B = 0. In this situation Ω can be⊥
determined (mod 2π )3 by observing any transverse behavior. However in
this case, since Ω will be equal to δβ, b will be undetermined.⊥

Unfortunately, observing the periodic signal profile that characterizes these
β rotations may prove to be difficult to realize experimentally if the system
is to be biased in the quasi-transverse regime. As can be seen in Fig. 5
the magnitude of the oscillatory β profile is very small, and without de-
velopment of a formal noise model it is unknown if these signal changes
will be observable. Clearly, to proceed further in the analysis it is required
to develop a method of determining either b or⊥ Ω that provides more
experimentally-feasible observations

As

4.2.2

can

Signal

be seen

Curvature

in Fig. 9,

P

changes

rofile

in the transverse field will cease to directly
influence the observed signal beginning at relatively small magnitudes; the
only influence the unknown transverse field will have on the observed sig-
nal will be in determining the curvature of the signal profile. Therefore
a possible method of extracting the transverse field magnitude would be
to measure the curvature of the signal profile, and then the parallel field
magnitude can be determined as well as the transverse orientation Ω.
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Figure 9: A plot demonstrating the effect of the transverse field on the observed
signal when the system is biased around the excited state LAC. Clearly the
observed signal approaches a steady value for Bx & .002T. In generating
this plot Bz = .05T and Γ = 10.

In general, the curvature of the signal profile will be a function of Bx, Bz,
β and Γ . Near the symmetry points the curvature of the signal profile is

approximately constant with respect to Bz (ie. ∂3S as
∂B3

= 0, is dictated
z pi

by symmetry). Therefore the signal curvature will not

∣∣
be influenced by the

presence of a parallel perturbation. From Fig. 10 it is clear

∣∣
that the dominant

source for changes in the observed signal curvature will be the presence of
a transverse perturbation. Furthermore, the orientation of that perturbation
has little influence on the change of curvature, only the magnitude of the
perturbation will cause an observable change.

Fig. 11 plots the curvature of the excited state LAC as a function of Bx.
To extract the Bx dependence a curve was fit to this plot, shown in green in
the figure. Γ was set to 10 and β to 0. The functional form determined from
this curve fitting procedure is:

∂2S

∂B2z

∣∣∣ 586038∣
pi

≈ (30)
(Bx − .0005T 2)

Since B2 = (B~ 0x + ~b )2, b can be solved for as:⊥ ⊥ ⊥

b = −⊥ B0 cosΩ±
√(

2
B2

( 2
− B0⊥ ⊥ Obs ⊥

) )
+
(
B0, ⊥
)

cos2Ω (31)

−1/2

where B ∂2S
⊥, Obs

√
≡ 586038 .0005T.

∂B2
+

z Obs
Clearly when the obser

(
ved per

∣∣ )∣∣
pendicular field matches the bias perpen-

dicular field, the transverse perturbation is 0; however there is a negative
solution (b = − 0 cos ) predicted to exist as well. This solution is⊥ 2B Ω⊥
indicative of an underlying symmetry that is physical and may very well be-
come manifest if the bias transverse field is nonzero. This symmetry, which
shall be referred to as the “β symmetry” can be intuitively understood in
Fig. 12, in which it is depicted as the “negative” solution for b given a⊥
positive angle Ω or the “positive” solution for the negative angle (the latter
will be the interpretation used in this analysis)10. An alternate method of
understanding this symmetry is by considering the negative Bz branch of

10 Positive angle refers to an angle belonging to the angular region [−π
2 , π ]2 in which cosΩ> 0
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Figure 10: A series of plots depicting the dependencies of the signal curvature on
Bx (Top), β (Middle) and Γ (Bottom). Clearly, a change in the transverse
field magnitude is the dominant cause for changes in the observed sig-
nal curvature. It is therefore proposed that by monitoring the changes in
the signal curvature the transverse perturbation magnitude can be deter-
mined.



detection of magnetic fields 24

Figure 11: (Blue) A plot of the curvature of the signal profile evaluated at Bz = .052T

and Γ = 10 as a function of Bx. (Green) A fitted curve ∂2S
∂B2

z

∣∣∣∣
.052

=

586038

(Bx−.0005T)2

vature upon Bx.

the curvature plot in Fig. 11. As the curvature has no dependence on β, in
an unperturbed situation the transverse field can always be taken to be pos-
itive; however it could happen that a perturbation is perfectly anti-aligned
with the bias transverse field and has a magnitude of 2B0 . In this case B⊥ ⊥
is effectively mapped to −B , which is an undetectable transformation with⊥
the sole observation of the signal curvature. Thus these “β symmetric” part-
ners form a degenerate set, as there exists a continuum of allowed solutions
due to the continuity of cosΩ.

When it is not the case that the observed transverse signal is equal to
the bias transverse field the solutions are split into 2 regions: B0 6 B⊥ ⊥, Obs
and B0 > B with⊥ , r⊥ Obs. These two egions can be made more obvious the
substitution B , Obs = aB

0 for an arbitrary a. Then, Eq. 31 becomes:⊥ ⊥

b = −⊥ B0 cosΩ±B0 a2 − sin2Ω (32)⊥ ⊥

In this equation it is obvious that b will

√
be degenerate under the map-⊥

ping a → −a. This is a manifestation of the rotational invariance of the
system, and there is no loss of information by restricting a to be positive,
as this is analogous to fixing the coordinate axes along the total transverse
field. Furthermore, b will be double-valued with respect to the mapping⊥
Ω→ −Ω as the RHS of Eq. 32 is an even function of Ω.

The r

4.2.3

the

|a| > 1

egion B0 6 B 1⊥ , Obs corresponds to a > . In this case the term under⊥
radical will

Solutions

always be positive. To obtain the correct limiting behavior as
a→ 1 the ± in Eq. 32 must be handled properly. In doing this, the angular
direction of b is limited to the quartercircle [⊥ 0, π ]2 and b is confined to be⊥
strictly positive:

π
b = −B0 cosΩ− a2 − sin2Ω⊥ ∀Ω : 0 6 Ω 6 (33)⊥

2

Note that no information

(
is lost

√
by limiting

)
the angular distribution of

b to this subregion as the full degeneracy of the solution is recovered by⊥

to extract the leading order dependence of the signal cur-



detection of magnetic fields 25

Figure 12: The rotational symmetry of the total transverse field (red). The dotted
circle represents the projections of equal B and is what would be ob-⊥
served experimentally. For a fixed transverse bias field B0 (black), any⊥
transverse perturbing field b (blue) that creates a B with the observed⊥ ⊥
magnitude is an allowable solution due to the rotational invariance of the
signal curvature. For the case |a| > 1 there is one positive solution for b⊥
for all values of Ω in the range [0, 2π]. For the case |a| = 1 there is one
positive solution for b for all values of⊥ Ω in the range [π2 , 3π ]2 . For the
case |a| < 1 there are only positive solutions for b for the negative angle⊥
interval when | sinΩ| 6 |a|. Usually there are 2 possible solutions on this
interval, but when | sinΩ| = |a| there is only one tangent solution.
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calculating the double-valued solutions with the mapping Ω

26

→ −Ω for
this region, and calculating the β symmetric partners. Given a transverse
perturbation bi at a given angle Ωi that solves Eq. 33, and a transverse bias⊥
field, the β symmetric partner can be calculated with the relationship:

bi = bi + 2B0 cosΩ 34⊥ ⊥ i ( )⊥

The β symmetric set is then build up from the set of (bi , Ω⊥ i) that constitute
the positive solutions to Eq.

˜
33.

It can be clearly seen that the β symmetric partners vanish if the trans-
verse bias field is set to 0. This provides a simple means of removing the
ambiguity in the observed curvature of the signal profile. Alternatively, the
degeneracy can be partially lifted by probing the slope of the curvature pro-
file in a similar manner as discussed for determining the magnitude of a
parallel perturbation. If the slope is positive, then ~b⊥

~ ~ 0
· B~ 0 < 0; if the slope⊥

is negative, then b⊥ ·B > 0.⊥

4.2.4 |a| < 1

The region B0

Solutions

> B , Obs corresponds to a < 1. Now, the term under the⊥ ⊥
radical in Eq. 32 may at times be negative, corresponding to the transverse
perturbation having an imaginary component. This is not physical and thus
places a bound on the allowed angular distribution of the transverse pertur-
bation. Indeed, the bound becomes:

| sinΩ| 6 |a| (35)

When |a| < 1,
√
a2 − sin2Ω < cosΩ for all choice of Ω. This means

that the two solutions for b will have the same sign, and thus will both be⊥
considered. This is unlike the previous case |a| > 1 when the two solutions
had opposite signs, and the negative solution was rejected in favor of the
calculation of the β symmetric partner. For b to be strictly positive,⊥ Ω

must be further restricted to the negative angle regime [π2 , 3π ]2 in addition to
the bound presented in Eq. 35. Since the RHS of Eq. 32 is even with respect
to Ω = π, without loss of information Ω can be restricted to the negative
quartercircle [π π2 , ] with the understanding that degenerate solutions exist
for the mapping Ω→ −Ω.

As seen in Eq. 32, for anyΩ such that | sinΩ| < |a| there are two allowable
solutions for b . With the geometrical interpretation given in Fig.⊥ 12 these
2 solutions can be considered a secant solution. The tangent solution, or
the solution when b is singularly valued for a given angle, occurs when⊥
| sinΩ| = |a|.

It is corroborative to the analysis that the solutions produced by the 1/B2x
dependence of the signal curvature produce degenerate solutions that en-
code β invariance of the curvature. This matches the graphical observations
of Fig. 10.

If Ω is unknown, then the following bounds can be placed on b :⊥

|B , Obs −B
0 | 6 b 6 B⊥ ⊥ ⊥ ⊥, Obs +B

0 (36)⊥

as can be clearly seen from Fig. 12. Notice that the difference between the
maximum possible perturbation and the minimum possible perturbation
is equal to 2B0 ; as the magnitude of the transverse bias field is reduced⊥
the transverse perturbation can be more tightly bound. When B0 = 0 the⊥
magnitude of the transverse perturbation can be unambiguously identified.
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of the observed signal can be discretized in the fol-
lowing manner:

∂2S

∂B2z

∣∣∣∣
pi

≈ S(pi + ζ) − 2S(pi) + S(pi − ζ) (37)
ζ2

where ζ is a small offset to the biasing field.
Combined with Eq. 27 it is clear that the parallel and transverse projec-

tions of the perturbing field can be determined by performing 3 separate
measurements: a first at B0z ≈ .05T to observe the overall signal, a second
at B0z ≈ .05T + ζ to extract the slope of the signal, and finally a third mea-
surement at B0z ≈ .05T − ζ to extract the curvature of the signal. With these
three quantities the parallel projection can be calculated with Eq. 27. From
the curvature measurement the parameter a can be extracted, and then the
transverse perturbation can be restricted to reside in one of two regimes:
|a| > 1 and |a| < 1. The |a| > 1 regime is defined by Eq. 33, Eq. 34, and the
understanding that degenerate solutions exist for the mapping Ω → −Ω;
the |a| < 1 regime is defined by Eq. 32, Eq. 35, the additional restriction of
Ω to the negative quartercircle [π π2 , ] and the understanding that degenerate
solutions exist for the mapping Ω→ −Ω over this angular region.

As the technique for detecting parallel perturbations requires a finite
transverse field, if this is to be true for all possible perturbations then the
external bias field must have a finite transverse component. The presence
of a finite transverse bias field means that observations of the transverse
perturbation will suffer inherent ambiguities that will require the simulta-
neous measurement of the the third derivative of the signal profile ( ∂C∂Bx for

C ≡ ∂2S
∂B2z

first of these

∣∣∣∣ ) and the β rotation of the perturbation to fully resolve. The
pi

is possible by performing a second series of measurements at

slightly offset transverse bias field (ie. ∂C∂Bx ≈
1
ε

(
∂2S
∂B2z

∣∣∣∣
pi,Bx+ε

− ∂2S ,
∂B2z pi,Bx

)
necessitating 6 measurements in total. However, the observation of the

∣∣
β ro-

tation will be difficult to observe in the quasi-parallel regime and

∣∣
may in

turn require the bias field be shifted into the quasi-transverse regime for a
larger oscillation amplitude.

Alternatively, the magnitude of the transverse field can be detected un-
ambiguously by setting the bias field to have no transverse component, in
which case any transverse effects, such as the formation of signal curvature
or a β rotation, can be directly attributed to the presence of a transverse
perturbation. With no transverse bias field, the ability to detect parallel
perturbations with the symmetric approach is limited to cases when there
simultaneously exists a finite transverse perturbation. However this incon-
venience can be neglected by instead using the existing methods of parallel
field detection which do not require the presence of a finite transverse field,
such as the observation of ESR spectra or via Ramsey pulse sequencing. In
this way transverse perturbations can be detected with relative simplicity.

Due to the β invariance of the signal curvature, no information regarding
the angular orientation of the transverse perturbing field can be obtained in
the absence of a transverse bias field. This can be remedied by performing
a second measurement of the signal curvature with a small but nonzero
transverse bias field. As the magnitude of the transverse perturbation will
have been calculated from the signal curvature measurements with zero
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transverse bias field, Ω can then be determined up to the double-valued

28

degeneracy of the mapping Ω→ −Ω.
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when it is desired to detect the presence of a small

magnetic field. The Nitrogen-Vacancy defect in diamond is capable
magnetometry in ambient conditions by observing changes in the

fluorescence signatures. While many sophisticated methods of detecting
fields parallel to the defect axis exist, these methods are unable to detect
transverse fields. The all-optical method of NV magnetometry provides
such a method of transverse field detection via the observation of an overall
decrease in PL intensity associated to the spin state mixing induced by the
transverse field. In this thesis the all-optical method of magnetometry is
extended to consider ensembles of non-interacting NV centers.

It is found that the excited state LAC region exhibits high sensitivity to
transverse fields. By biasing one of the defect axes of the NV ensemble
around this region it is shown that through the measurement of the PL in-
tensity drop, the slope of the signal curve and the curvature of the signal
curve the magnitude of a parallel perturbation can be calculated. Further-
more, through the measurement of the signal curvature, a limiting bound
can be placed on the magnitude of a transverse perturbation whose width is
proportional to the transverse component of the biasing field. When the bias
field is perfectly aligned with a defect axis and thus has no transverse com-
ponent, the magnitude of the transverse perturbation can be unambiguously
identified. It is therefore recommended that for the detection of transverse
fields an external magnetic field perfectly aligned with a defect axis be ap-
plied to bias the system in the excited state LAC regime. If desired, the
angular orientation of the transverse perturbation can be determined up to
a two-fold degeneracy by repeating the measurement of the signal curva-
ture with the bias field shifted slightly off-axis. For the detection of parallel
fields an additional small biasing field transverse to the chosen defect axis
must additionally be applied to the system to ensure that a finite curvature
is always present in the signal profile.
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to Be

clearly

Explored

in Eq.16 and Fig.7 unfortunate divergences de-
velop at the LAC regimes. While this does not impact the overall
results it does make it difficult to characterize the immediate vicinity
of the LAC regions with the present model. A more proper approach
will assume the parallel field to be at the excited state LAC region
and expand around variations about that point. Only the coefficients
αij, i, j ∈ 4, 5, 6 are expected to change with this new perturbation ap-
proach as the perturbation condition µgB 1hDgs

� is still maintained at
the excited state LAC region.

2. A proper noise model should be developed with the photon shot noise
as the dominant source of uncertainty. A demonstration of how this
calculation might proceed is given in the appendix; however, the effort
was ultimately unsuccessful due to the divergences that developed in



appendix

the attempts to place a bound on the minimum detectable field with
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the error expressions developed.

3. There exist two isotopes of nitrogen: N14 and N15. N14 is the more
prominent of the two and carries spin-1. Therefore its nuclear spin
will interact with magnetic fields via Zeeman interactions and with the
NV electronic spin via hyperfine interactions. The total Hamiltonian
is composed of three parts: the NV electron Hamiltonian, the N14

Hamiltonian and the interaction Hamiltonian[44–46].

HTot = HNV +HN14 +HNVN14

H 14 = hQI2z + hγ ~
N NB ·~I

HNVN14 = AzSzIz +A (⊥ SxIx + SyIy) (38)

where Q = −4.95MHz is the intrinsic quadrupolar interaction of the
nuclear spin, γN = −.308kHz/T is the gyromagnetic ratio of the nu-
clear spin, and Az = −2.162MHz, A −⊥ 2.62MHz are the parallel and
transverse components of the hyperfine tensor respectively.

In normal operations the effect of the local nuclear spin can be ne-
glected but near the LAC regions these effects become more promi-
nent[47]. The hyperfine interactions can create spin state mixing be-
tween states such as |ms,mI〉 = |0, 0〉 and |ms,mI〉 = |+1,−1〉 if these
states are close in energy ie. at the LAC region, which in turn will in-
fluence the PL intensity. The accuracy of this model will be improved
by included such effects.

6 ap
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6.1
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Approximate

general

di

Nullspace

x

M, it is

of

nontrivial to solve the Eq. 21 exactly. However,
it is solvable numerically and with proper approximations it is solvable
analytically as well. For the analytical approach, it is helpful to express
the coefficients αij explicitly in terms of small parameters that can then be
used in expansions. The following new variables are defined:

µgB
δa = ⊥

Dgs

εa =
µgB‖ (39)
Dgs

δa and εa are reduced, unitless representations of Bx and Bz respectively.
In this representation, the four recurring non-trivial terms in the coefficients
αij are:
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( µgB⊥√
2 hDgs − µgB‖

) δ→ √ a

2 (1− εa)

µgB⊥√
2
( δa

hDgs + µgB

( µgB

) → √
2 (1+ ε‖ a)

⊥√
2 hD − µgB

) δ→ √ a

2 (D‖ es/Dgs − εa)es

µgB⊥√
2
( (40

hD + µgB
) δ→ √ a )

2 (Des/Dgs + εa)es ‖

Recall that the perturbative methods used to determine the coefficients
αij require δa � 1. Therefore keeping only leading order in δa, successive
row reduction is performed until the matrix M is of the form  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


 ∗ ∗ ∗


 ∗ ∗


∗ ∗


at which point direct inspection


reveals the bottom


row terms to be negligi-

bly small and they are subsequently taken to be zero. Thus, by hand, the
matrix M is forced to have a one-dimensional nullspace with the unnormal-
ized nullvector n~ .

6.2

Mathematically

Noise Model

speaking, the results obtained from solving Eq. 24 yield the
expected photon signal when averaged over the system’s statistical distribu-
tion function. In order to develop a model to characterize the noise in the
predicted signal, it is necessary to consider the sources of statistical uncer-
tainty. The dominant source will be the photon shot noise, which follows
Poisson statistics [48,49]. The shot noise appears through the rates kij

′ ; there-
fore it will be imposed that for a given collection time τ:

〈k ′2ij 〉τ
2 = 〈kij

′ 〉2τ2 + 〈kij
′ 〉τ (41)

as is dictated by Poisson statistics.
In quantum mechanics, the variance in the expected value of a quantum

operator is given by the formula:

∆o2 = 〈Ô2〉− 〈Ô〉2 (42)

In light of Eq. 42 the Signal operator S is defined as:

6

S = ητ
i

∑ 3

=4

∑
kij
′ |i〉 〈i| (43)

j=1
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S is defined such that the expected value of S when operating on a generic
wavefunction |ψ〉 yields Eq. 10. That is to say:

3 3

〈S〉 = ητ
i

∑
〈

=4 j

∑
kij
′ 〉n̄i (44)

=1

Thus Eq. 42 will be used with regards to S to develop the statistical uncer-
tainty in the observed photon signal.

It is necessary to express the uncertainty in S as a function only of the
expectation values 〈kij

′ 〉, as they can be obtained via Eq. 6. For the term 〈S〉2

this is already accomplished; however for the term 〈S2〉 to be a function of
〈kij
′ 〉 the Poisson statistics must be imposed.
Indeed,

6 3 6 3

S2 = η2τ2


i

∑
=4 j

∑
kij
′ |i〉 〈i| k |mn

′ m〉 〈m|

=1

(
m

∑
=4 n

∑
=1

)
6 3

= η2τ2
∑ ∑

kij
′ k |mn
′ i〉 〈i|m〉 〈m|

i,m=4 j,n=1

= η2τ2

i

∑6 ∑3
k ′ k ′ |i〉 〈i|ij in (45)

=4 j,n=1

Therefore, taking the expectation value of Eq. 45 and using Eq. 41:

4 3

〈S2〉 = η2
∑∑

n̄i

〈k ′2ij 〉τ2 + 〈kij
′ kin
′ 〉τ2

i=4 j=1  n=

∑
j

6


= η2

∑∑3
n̄i〈kij

′ 〉τ
i=4 j=1

1+ 〈kij′ 〉τ+
n

∑
〈kin
′ 〉τ

=j


6


= η2

∑ 3

n̄i〈kij
′ 〉τ 1+ 〈kin

′ 〉τ (46)
i=4 j,

∑
n=1

( )
where we’ve also made use of the fact that for independent quantities a and
b, 〈ab〉 = 〈a〉〈b〉.

Eq. 46 can be recast as the matrix equation:

〈S2〉 = η2nE~ Diag(~1+ τK ′G~ ) τK ′G~ (47)

Therefore with Eq. 24 & 47 the variance of the observed signal can be
expressed with the following equation:

∆S2 = η2
[

2nE~ Diag(~1+ τK ′G~ ) τK ′G~ − (Rτ)
]

(48)
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