
                         

22.615, MHD Theory of Fusion Systems 
Prof. Freidberg  

Lecture 5: The Screw Pinch and the Grad-Shafranov Equation 
 
 
Screw Pinch Equilibria 

 
1. A hybrid combination of Z pinch and θ  pinch 
 

 
 

2. This combination of fields allows the flexibility to optimize configurations with 
respect to toroidal force balance and stability. 

 
3. Field components: ( )B ( ) ( ) ,z zB r e B r e p p r= + =θ θ  

 
a.  B 0∇ ⋅ =
 

1
0zB B

r z
θ∂ ∂
+ =

∂θ ∂
  automatically satisfied 

 

b. ( )''
0 ZJ = B = -B ze rB r e⎡ ⎤∇ × + ⎢ ⎥⎣ ⎦θ θμ  

 
c. J B p× = ∇  

 
'p rp e∇ =  

 
( )J B = θ z z θ rJ B - J B e×  

 

       ( )' '

0

1
z z

B
rB B B

r
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

θ
θμ

 

 
Even though the equations are nonlinear, the forces superpose because of 
symmetry 
 

2 2

0 0

0
2
zB B Bd

p
dr r

⎛ ⎞+
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

2
θ θ

μ μ
=   screw pinch pressure balance relation 

 
4. The screw pinch has many properties of more realistic, multidimensional 

toroidal configurations 
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a. There are two free functions, say  (The ( ), ( ).zB r B rθ θ  pinch, Z pinch are 

special degenerate cases) 
 
b. The constant pressure contours p(r) = constant are circles r = constant. 

The flux surfaces are closed, nested, concentric circles. 
 

c. β  can be varied over a wide range if (0) 0zB ≠  
 

d. The magnetic lines wrap around the plasma giving a nonzero rotational 
transform 

 
General Equilibrium Relation for 1-D Configurations 
 

1. This is a useful relation for defining β  
 

     
2 2 2

2

0 0

0 2
2

zB B Bd
p r dr

dr r

⎛ ⎞+
+ + = > π⎜ ⎟⎜ ⎟

⎝ ⎠
∫θ θ

μ μ
 

 

2. 
'2 2

2 2
1

0 0 0

2 4 2
2 2

a

z zB B
T dr r p rdr p r p

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= π + = − π + + π +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫μ μ

2

02
zB
μ

 

 

 
( )2 22 2

02 0

0 0

2 4 4 4
2 2

zz
B BB B

a rdr p rdrp rdr
−⎛ ⎞ ⎛ ⎞

= π = − π + = − π + π⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫ ∫μ μ 02μ
 

 

3. ( )
( ) ' a2 2 2 2

'2
2

0 0 0

2 2
2

⎡ ⎤ ππ π ⎢ ⎥= =
⎢ ⎥
⎣ ⎦

∫ ∫
r BB r

T dr r rB dr
r

θθ θ
θμ μ 0

=
B

μ
 

 

         
2 22

0 0

0 2 4
⎛ ⎞π

= =⎜ ⎟π π⎝ ⎠

I Ia
a

μ μ
μ

 

 
4. The general equilibrium relation is given by  
 

                
2 2 2

0 0

0

2 2
8 2

zI B B
prdr r dr

−
π = + π

π∫ ∫
μ

μ
 

 
 plasma energy line density    poloidal tension    toroidal diamagnetism 
 
5. This suggests the following cylindrical definitions 
 

 
2

2

16
p

pr dr

I

π
= ∫

0

β
μ

     poloidal β  
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2
0

4
T 2

pr dr

a B
= ∫0μβ        toroidal β  

 
Calculate the Rotational Transform  
 

    
 

1. Note that Δθ  is independent of 0θ  because of cylindrical symmetry. 
 
2. The average value of Δθ  is just the change θ  as the magnetic line moves 

one length along the torus 
 

 
 
 
 
 
 
 

 
 
 

3. Calculate the field line trajectories 
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0 (

(2)

r

z

z

Bdr
dz B

Bd
dz rB

= =

= θθ

1)

      

 
4. Equation (1) implies that r(z) = const. The magnetic lines lie on circles. This 

is not surprising since the p(r) = const. surfaces are circles. 
 
5. Solve Eq. (2)       

                       r = const. 
                    

 
( )B r
( )z

d
dz rB r

= θθ
 

 

 
z

B
d d

rB
= θθ z  

 

 02

0 0

R

z

B
d d

rB

Δ π θ=∫ ∫
θ

θ z  

 
6. The angle Δθ  is by definition just equal to ι  
 

 02
( )

z

R B
r

rB
π

ι = θ  

 
7. The safety factor is defined as 
 

 
2

( )
( )

q r
r
π

=
ι

 

 

 
0

( ) zrB
q r

R B
=

θ
 

8. Note ( ) 0rι =  for a θ  pinch and ( )rι = ∞ for a Z pinch 

 
9. The 1-D radial pressure balance relation for a screw pinch accurately describes 

radial pressure balance in all fusion configurations of interest 
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Examples 
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Toroidal Force Balance 
 

1. Consider the axisymmetric torus, the simplest, multi-dimensional configuration 
 
2. We shall derive the Grand–Shafranov equation for axisymmetric equilibria 

 
3. This provides a complete description of toroidal equilibrium 

 
a. radial pressure balance 
 
b. toroidal force balance 

 
c. β  limits 

 
d. q profiles 

 
e. magnetic well, etc…. 

 
4. It applies to the following configurations  
 

a. RFP 
 
b. ohmic tokamak (circular and noncircular) 

 
c. high β  tokamak (circular and noncircular) 

 
d. flux conserving tokamak (circular and noncircular) 

 
e. spherical tokamak (circular and noncircular) 

 
f. spheromak (circular and noncircular) 

 
g. toroidal multipole (circular and noncircular) 

 
5. Grad–Shafranov equation 
 

a. exact (no expansion) 
 
b. axisymmetric 0∂ ∂ =φ  

 
c. 2-D    

   
d. nonlinear  

 
e. partial differential equation  

 
f. elliptic characteristics 

 
6. Plan of action 
 

a. Derive the exact Grad–Shafranov equation 
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b. Solve by means of an asymptotic expansion in a R  

 
c. Zero order: (a/R)0 1-D screw pinch radial pressure balance  →

 
d. First order: (a/R)1   toroidal force balance →

 
Derivation 
 

1. Geometry 
 
2. Axisymmetry  

  

( ) (

0

, ,Q R Z Q R Z

∂
=

∂

→

φ

φ, )
 

 
3. We solve in this order 
 

0

B = 0

J = B

J B = p

∇ ⋅

∇ ×

× ∇

μ  

 
4.  B = 0∇ ⋅
 

a. 1 1
0Z

R
BB

RB
R R R Z

∂∂ ∂
+ +

∂ ∂ ∂
φ
φ

=  

      = 0 
 

b. Bφ  is arbitrary as of now 

 

c. 1
ZB

R R
∂ψ

=
∂

 

introduce “flux” function ψ  

1
BR R Z

∂ψ
= −

∂
 

 
 
 
 

d. These results can be summarized as follows 
 

φ φ= +B BpB e  
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φ= ∇ψ ×
1

Bp e
R

 

 
( )R,Zψ ψ=  

 
5. Why is ψ  the “flux” function? 
 

a. ( ) φ
φ φ φ

∂∂
= ∇ × = ∇ × = −

∂ ∂
1

Bp Z R

A
A A e RA e

R R Z
e  

 
RAψ = φ  

 
b.  B Ap p dψ = ⋅∫
 

( )
eR

, 0= =∫ ∫
R

zdR B R Z Rdφ   

    

eR

1
2

∂ψ
= π

∂∫
R

R d
R R

R  

 
 

c. ( ) ( ) ( )2 ,0 ,0 ,0 is arbitary set to ze⎡ ⎤ψ = π ψ − ψ ψ →⎣ ⎦p a aR R R ro  

 
2pψ = πψ  

 
d. We usually label the flux surfaces with ψ  values rather than p values 

 
6. 0J = B∇ ×μ  

 

a. 0
1

J =
e

RB e
R R

⎡ ⎤
∇ × + ∇ψ ×⎢ ⎥

⎣ ⎦

φ
φ φμ  

             =0                   =0  

( ) ( )
e e e e e

RB RB
R R R R R

= ∇ × + ∇ × + ⋅ ∇ ∇
e

R
ψ − ∇ψ ⋅ ∇ − ∇ ⋅ ∇ψ ∇ψ∇ ⋅φ φ φ φ φ

φ φ + φ  

 
        =0 

 ( ) 2 +
1 ∂ ∂ψ ∂ψ⎛ ⎞ 1 ∂ψ

= ∇ × − ∇ ψ + →⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
R z2 2

e e
RB e e e

R R R Z RR R
φ φ  φ φφ

 
                   =0 

e
2

e
R R Z Z R RR

∂ψ ∂ ∂ψ ∂ 1 ∂ψ⎛ ⎞− + →⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
φ  φ

2 2

2 2

1 2e e
RB

R R R R R RR Z

⎡ ⎤∂ ψ ∂ψ ∂ ψ ∂ψ
= ∇ × − + + −⎢ ⎥

∂ ∂∂ ∂⎢ ⎥⎣ ⎦

φ φ
φ  
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2

0 2

1
J =

e e
RB R

R R R R R Z

⎡ ⎤∂ ∂ψ ∂ ψ⎛ ⎞∇ × − +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

φ φ
φμ  

 
b. These results can be summarized as follows 
 

0 0 0J = J e Jp+φ φμ μ μ  

 

0J ep RB
R
1

= ∇ ×φ φμ  

 
*

0J R
1

= − Δ ψφμ  

 
2

* 2
2 2

1∂ ∂ψ ∂ ψ ∇ψ⎛ ⎞Δ ψ ≡ + = ∇ ⋅ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠
R R

R R R Z R
 

 
7. Force balance J×B = p∇  
 

Decompose this relation into three components along B, J,∇ψ  
 

8. B component 
 

a.  B 0p⋅ ∇ =
 

b. 0
B ep

p
R R

∇ψ ×∂
+ ⋅ ∇

∂
φ φ

φ
=  

 
c.  0e p⋅ ∇ψ × ∇ =φ

 
d. ( )p p= ψ     p is an arbitrary free function of ψ . 

 
e. There is no way to determine ( )p ψ  from ideal MHD. We need transport 

theory or some other simple physical model. 
 

f. Note:  is more of a constraint than ( )p ψ ( )p r, θ  

 
9. J component 
 

a.  J 0p⋅ ∇ =
 

b. 1
J 0 :

∂
+ ⋅ ∇ = → ∇ × ⋅ ∇ψ =

∂ ψp

J p d
p RB e

R R
φ

φ φφ
0

p
d

 

 

c. 1
0

dp
e RB

R d
⎡ ⎤⋅ ∇ψ × =⎣ ⎦ψ φ φ  
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d.   F is an arbitrary free function ( )RB F= ψφ

 
10. Interpretation of ( )F ψ  

 

     
 
  

a. 
2

0 0
J A =

R
p p

e
I d dR Rd RB z

R

π ⎛ ⎞
= ⋅ ∇ ×⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ ∫ φ

φφ  

 

( ) ( )
0

2 2 ,0
R F
dR F R F

R
∂

0,0⎡ ⎤= π = π −⎣ ⎦∂∫  

 
           

0
0RB= =φ  

 
b.  ( )2pI F= π ψ

 
c. pI ( )ψ  is the total poloidal current passing through the circle  (R, 0)= 

const. 

ψ

 
11. ∇ψ  component 
 

( )J B - 0p∇ψ ⋅ × ∇ =  

 

a. ( )21
dp

T p
d

= −∇ψ ⋅ ∇ = − ∇ψ
ψ

 

 
b.  ( ) ( )2 J Bp pT J e B e= + × + ⋅ ∇φ φ φ φ ψ

 
    ( )J B J Bp p p pe B e J e e J B⎡ ⎤+ × + × + × ⋅ ∇⎣ ⎦φ φ φ φ φ φ φ φ= × ψ  

 

c. 1 1 1
aT F e e

R R0

⎡ ⎤= ∇ × × ∇ψ × ⋅⎢ ⎥⎣ ⎦
φ φμ

∇ψ  
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    ( ) ( )2

1
0

dF
e e

dR0
⎡ ⎤= ∇ψ × × ∇ψ × ⋅ ∇ψ⎣ ⎦ψ φ φ =

μ
 

 

d. 1 1
bT F e e

R0

⎡ ⎤⎛ ⎞= ∇ × × ⋅ ∇ψ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

Bφ φ φμ
 

 

( )2
0

F dF
e e

dR
= ∇ψ × ×

ψ φ φμ
⋅ ∇ψ  

( )22
0

F dF
dR

= − ∇ψ
ψμ

 

 

e. *

0

1∇ψ × ⎛ ⎞
= × − Δ ψ ⋅ ∇ψ⎜ ⎟

⎝ ⎠
c

e
T e

R R
φ

φ μ
 

 

( )2*
2

0

1

R
= − Δ ψ ∇ψ

μ
 

 
f. Combine terms 
 

( )
2

2
2 2

1 1
* 0

2
dp d F
d dR R0 0

⎡ ⎤
∇ψ − − − Δ ψ =⎢ ⎥

ψ⎢ ⎥⎣ ⎦ψ μ μ
 

 
g. The Grad–Shafranov equation is given by 
 

* 2
0

dp dF
R F

d d
Δ ψ −

ψ ψ
= −μ  

 
where 
 

( )p p= ψ  

 
free functions 
 

( )F F= ψ  

 

φ φ= ∇ψ × +
1

B
F

e e
R R

 

 
1 1

J = *
dF

e e
R d R0 ∇ψ × − Δ ψ

ψ φ φμ  

 
and ,ψ = πψ = π2 2p pI F  

22.615, MHD Theory of Fusion Systems                                                              Lecture 5       
Prof. Freidberg                                                                                                                       Page 11 of 11 

 


