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Ballooning mode equation 
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Mercier Criterion 
 

1. In using the quasimode representation we have had to assume the solution 
 converges sufficiently rapidly as ϕX χ→ + ∞ . 

 
2. Whether or not convergence is acceptable depends upon equilibrium profiles 

and parameters. 
 

3. Analysis of Euler-Lagrange equation for X indicates that there are two classes 
of solutions for large χ  depending on profiles 

 
4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5. Oscillating solutions give rise to unbounded energy: W . Strong 

convergence gives rise to bounded energy 
→∞

 
6. Oscillatory case implies that ballooning mode formation is not valid as χ→ ∞ . 

However, for this case a trial function of the form 
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leads to δ  (instability) <W 0

 
7. For exponential solutions, one starts with the strongly converging solution as 

 and integrates to the right. χ = −∞
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

8. The condition of oscillatory solutions is known as the Mercier criterion. When 
the Mercier criterion is violated, the solutions oscillate for large . The 
ballooning mode equation is not valid but this does not matter as the system 
is already unstable to interchanges. 

χ

 
9. When the solution’s do not oscillate the Mercier criterion is satisfied and the 

system is stable to interchanges, and the ballooning mode formalism is solid. 
In this case one integrates the equation and looks to see if there is a zero-
crossing. If there is one, the system is unstable to ballooning modes 

 
10. Relation of Mercier-Suydam 

 
Suydam: local behavior as  near regular surface in space →x 0

  Mercier: behavior as χ→  in pseudo angle ∞
 
  Mercier is actually fourier transform of “Suydam like” analysis 
 

  ( )
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S '
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   ( ) ( )
0

dq

d

ψ
≈ ψ − ψ χ

ψ
 

       pseudo angle 
           
       radial localization 
 
  ≈  xk
     transform variable 
 
Forms of the Mercier Criterion 
 

1. Exact form <MD 1 4  for stability 
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π π
= Jdχ χ∫ ∫  

 
2. For tokamaks, pressure is low: 2,β ∈ ∈∼ . As with Suydam criterion, Mercier 

criterion is satisfied over most of the discharge because of low β . Only 
problem is near the origin. 

 
a. For a β  tokamak with circular cross section, Mercier becomes ∼p 1

 

 ( )
22 '

' 2
2

r q
4r 1 q 0

q
+ β − >  

 
 Near r=0 q  is very small and we require '

 
  >0q 1
 
b. Near the origin for non-circular tokamaks, the criterion becomes 
 

 
( )

( )
⎧ ⎫⎡ ⎤κ − βκ − δ⎛ ⎞⎪ ⎪⎢ ⎥< − κ − +⎨ ⎬⎜ ⎟⎢ ⎥∈ κ κ ++ κ κ + ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
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 for κ = , triangularity and 1 βp  have no effect. 

 
 for κ > , β  is destabilizing, 1 p +δ  stabilizing 

  
good Mercier: elongation and outward triangularity, moderate  and 

 

βp

0q 1>
�

 
c. Why do toroidal effects introduce such big changes since they are of order 

. Compute ∈ ( )κ = ⋅ ⋅ ∇n n b b  

Circle: θ

θ
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Ballooning Modes 
 

1. Simple limit ballooning mode equation for β ∼p 1 , circular cross section 

plasma with gradient in . 'p β ∈∼'
pr 1  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

2. 
θ

θ
χ→θ → κ →−n

0
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J

B R
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0 0R R B B→ →  
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∫
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3. This gives for the Euler-Lagrange equation 
 

( )2 X
1 sin cos

∂ ∂⎡ ⎤+ Λ + α Λ θ + θ =⎡ ⎤⎣ ⎦⎢ ⎥∂θ ∂θ⎣ ⎦
X 0  

 
( ) ( )0 0S sin sΛ = θ − θ − α θ − θin  

 
2 ''

2 '0
02

0

2 r prq
S q

q R Bθ

μ
= α = − = − βR  

 
4. Solved numerically gives S vs α  diagram 
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I first region of stability (goes unstable at high α ) 
 

         II second region of stability (eventually becomes stable at high α ) 
 

5. Region I maximum β . Set 6Sα ≈ ⋅  to determine critical profile for maximum 
. For  β =�a 0q 1,q 1

 
∈

β ≤ ⋅t
a

3
q

 (circle) 

 
6. Numerical studies by Sykes, Yamazaki 

        
     cross sectional area 

0
t *

* 0

2B

0

22 q
q R I
∈ κ

β < ⋅ =
μ�

A
 

 

= 0

0

I
0.44

aB
 

 
For optimized profiles with elongation and outer triangularity 

 
7. For 0 t2,q 1.5, 1 3 10%κ = = ∈= →β ≈  

 
Second Stability 
 

1. Why does such a region exist 
 
2. Examine local shear 

 

( ) � ( ) �2

0

JB1
q q , d q

2 R

π
θψ = ψ χ χ =

π ∫  

 
local shear 
 
         shear 
�r q

S cos= − α θ
q r
∂
∂

 

       pressure driven modulation 
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3. Note: bad curvature occurs as θ = 0  due to toroidal field. Stabilizing term due 

to shear 
2'rq

q

⎛ ⎞
α ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
External Kinks 
 

1. Consider surface current model. p=const, circular cross section 
 

δ = δ + δ + δp sW W W Wv  

 
2
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      curvature term       kink term 
 

        toroidal curvature 
 

 
2

2 2s t
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W B1
d c
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π
θ os

⎡ ⎤⎛ ⎞δ β⎛ ⎞⎢ ⎥= − θ ξ + θ⎜ ⎟ ⎜ ⎟π ∈ ∈⎢ ⎥π ∈ μ ⎝ ⎠⎝ ⎠⎣ ⎦
∫  

      
        high β  ballooning effect 
 
        kink term 

 
2. Modes have the structure of pressure driven kinks 
 

 
 
 
 
 
 
 
 
 
 
 

3. Stability diagram (sharp boundary model) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Full numerical studies using optimized profiles and cross-sections 
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∈ κ
β = ⋅ = ⋅t

*

I
14 028

q aB

nq

 

 
 and  q  >* *mi

 
 Note, no dried  for following modes. *minq
 

5. For  κ = = β = ∈* t1,q 1.7 .08
 

For optimized Troyon = κ =*minq 1  ,5 , 1.6
 
        β = ∈ t .15
 
Set t 5%1 3→ β =∈=  
 
Near the regime of reactor interest!! 

 
Requirements on β   
 

1. There are two basic fusion energy requirements where β  enters 
 
2. Ignition and Wall Loading 

 
3. Ignition ( )eT T Tι= =  

 

a. 
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      as 10 22 3keV  , v 10 m sec−σ =
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βτ =
2

1.2

B
 

 
4. Wall Loading 

         .4 
a.  6 2 4 2

E f f 0P P P V .5 10 B 2 R a= η = η = η × β π π
 

             3 
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d. Eliminate a from step b. 
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e. Substitute a into (C) 
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f. For 6
W

210 m= × ω 10

R

P 4  and P  watts = 9
E

 

β ≤2B 1.5  
 

g. For B=5T at R  then = 0
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β < 6%  

 
5. The Troyon limit 
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