22.615, MHD Theory of Fusion Systems
Prof. Freidberg
Lecture 19
1. Stability of the straight tokamak
1. pressure driven modes (Suydams Criterion)
2. internal modes

3. external modes

2. Tokamak Ordering
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1. Over most of the plasma the destabilizing term in Suydams criterion is much

smaller than the stabilizing contribution.

“.| Suydams criterion satisfies over most of the plasma

2. Exception:

near r=0 p(r)~p (O)r
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2
rB2 7z +8ugp >0

dominates near r=0

3. Resolutions: straight case

/ Flatten p profile

=

4. Resolution: Toroidal Case
a. In toroidal case there are important modifications to Suydams criterion:
Mercier criterion. These corrections can eliminate the need for flattening
the p profile

b. Simple, low B circular limit of Mercier criterion

\2
rB2 [%J + 8ugp (1 - qZ) >0
toroidal correction

c. For q(O) >1, pressure term is stabilizing: average curvature is formable.

5. Conclusion:

Localized interchange modes are not very important in a straight tokamak
because B is very small. Near r=0, we need either flattening (straight) or

q(0) >1 (toroidal)
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Internal Modes in a Straight Tokamak

L, =2nR, m ~ 1 poloidal wave number
27R
a/ROEe }\:E: TCO_)k:_L
k n Ro
By/B, ~€ n ~ 1 toroidal wavenumber

1. Use this ordering to simplify f and g
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2. Therefore

ZTCZRO/MO R

SWL ~§Irdr[%—%f [rzé-Z +(m2 _1)%‘52}

Stability of Internal Modes

1. m=>2— stable, both terms positive.

2. m=1 nq(r)>1 (n=1 worst)
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3. m=1 q(r) < 1 somewhere

use the following trial function

+«——— ( = 1 Surface

\ e 2
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1 1 qfr
a. =1 O<r<rg-3% q(r):q(rs)— (;2)

_1
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=0

(1_§j r,—d<r<rg+39

r>rg+96
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c. M—->0ass6->0

d. with an m=1 resonant surface in the plasma, the system is marginally
stable in leading order; i.e. if q(0) <1

e. to test stability for this case we must calculate W to next order for the
m=1 mode.

Calculate Next Order 8W for m=1, n=1 Mode

3,202 2
1. f= rme; (n—lj
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Use same trial function as before

o

Summary of Internal Modes in a Straight Tokamak
1. m=>2 stable
2. m=1, n=1 worst case for n=1, requires q(0) > 1 for stability
3. internal modes do not limit 3, or | (q(a)), but clamp q(O) ~1 by sawtooth
oscillations

4. To show stability we needed to calculate W =&® W, + €* 5W,

I
0 const.

Consider now External Modes
1. Vacuum is force free fields
2. m=1 Kruskal Shafranov limit
3. High m external kinks

Subtle Issues For External Modes

Vacuum as force free Plasma

Vaccum

3 chamber Zero current

force free plasma
. —— Waccum
— /:l- — —
r
I II
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. cold, but highly conducting plasma surrounds core - more realistic than
vacuum

. Is there any difference in stability in these 2 cases.

l =0
> might anticipate big difference

Il 6 =

~ |12
But! Vac. W, :%”51‘ dr

FFP Weep :%jdfﬂél‘z +yp|v g +§-(QXB1)+(§-Vp)V.£}

in FFP J=p =0 in equilibrium

~ |2
B,

Mp = %J.d[

Thus, FFP same as Vac. —® might anticipate no difference in stability since
3W'’s are the same for each.

How do we calculate 8W,, Wp. Minimizing condition is
V x El =V Bl =0 *“vacuum” fields

Vac: BC.QBl =0 n-B;

Sw S

=Nn-Vx§& xB
b - Sp

=n-Vx§ xB
S, : 2L " =ls,

and B1ZVX(‘:XB)

In the FFP we must check that a well behaved El always gives rise to well
behaved é This is an additional constraint that can make the FFP more
stable

Example: cylindrical screw pinch

B
By, +1Fg—>g=—‘Tlf

a. if k, m are such that F = 0 in FFP region then § is well behaved and
oW, = SWerp
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b. Usually, however F =0 in FFP for external modes. Then, § is

unbounded —» leads to infinite energy. This is not an allowable
displacement

c. Calculation must be redone with new boundary condition Elr (r;)=0.

Thus is an additional constraint, which is equivalent to placing a
conducting wall at r =r

external —» internal mode with wall at singular surface.

d. .. FFP is more stable than Vac if F(r,) =0 in FFP region.

7. But ! most realistic case is neither vacuum nor FFP, but a plasma with a
small resistivity

~ 12
In that case W, =%”Bl‘ ar
0B1 - m ~
and —=VV(\_/x§—ng)—>§1=V><(g><B)——V><V><§l
ot = o

Careful analysis choose that & is bounded at the resonant surface.

Stability boundary is the same as Vacuum case, but growth rate is smaller,
depending upon resistivity
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Summary

Vacuum: certain stability boundary, growth rate ~ v; /R
Ideal FFP: same stability boundary, growth rate if K-B =0
much more stable (y =0) if k-B=0

Resistive FFP: same boundary as vacuum but

%
TRES
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