
22.615, MHD Theory of Fusion Systems 
  Prof. Freidberg 

Lecture 19 
 
1. Stability of the straight tokamak 
 

1. pressure driven modes (Suydams Criterion) 
 
2. internal modes 

 
3. external modes 

 
2. Tokamak Ordering 
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1. Over most of the plasma the destabilizing term in Suydams criterion is much 

smaller than the stabilizing contribution. 
 

∴ Suydams criterion satisfies over most of the plasma 
 

 
2. Exception: 
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      dominates near r=0 
 

3. Resolutions: straight case 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 4.  Resolution: Toroidal Case 
 

a. In toroidal case there are important modifications to Suydams criterion: 
Mercier criterion. These corrections can eliminate the need for flattening 
the p profile 

 
b. Simple, low  circular limit of Mercier criterion β
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       toroidal correction 
 

c. For , pressure term is stabilizing: average curvature is formable. ( )q 0 1>

 
5.  Conclusion: 
 

Localized interchange modes are not very important in a straight tokamak 
because β  is very small. Near r=0, we need either flattening (straight) or 

 (toroidal) ( )q 0 1>
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Internal Modes in a Straight Tokamak 
 
 
  
 
 
 
 
 

 
 
 

z 0L 2 R m= π ∼ 1 poloidal wave number 
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zB B n 1θ ∈∼ ∼  toroidal wavenumber 

 
1. Use this ordering to simplify f and g 
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2. Therefore  
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Stability of Internal Modes 
 

1.  stable, both terms positive. m 2≥ →
 
2.       (n=1 worst)    ( )m 1 nq r 1= >
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3. m=1 q(r) < 1 somewhere 
 
 
 
 
 
 
          

 
 
 
 
 
 
 
 
 
 
 
 
 
use the following trial function 
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c.  FW 0 asδ → δ→

 
d. with an m=1 resonant surface in the plasma, the system is marginally 

stable in leading order; i.e. if ( )q 0 1<  

 
e. to test stability for this case we must calculate Wδ  to next order for the 

m=1 mode. 
 
Calculate Next Order  for m=1, n=1 Mode Wδ
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Use same trial function as before   
 
 
 
 
 
 
 
 
 
 
      

 
 
 
 
Summary of Internal Modes in a Straight Tokamak 
 

1.  stable m 2≥
 
2. m=1, n=1 worst case for n=1, requires ( )q 0 1>  for stability 

 
3. internal modes do not limit β , or I ( )( )q a ,  but clamp ( )q 0 1≈  by sawtooth 

oscillations 
 

4. To show stability we needed to calculate  2 4
2 4W Wδ =∈ δ + ∈ δW

 
              0       const. 

Consider now External Modes 
 

1. Vacuum is force free fields 
 
2. m=1 Kruskal Shafranov limit 

 
3. High m external kinks 

 
Subtle Issues For External Modes 
 
 Vacuum as force free Plasma  
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1. cold, but highly conducting plasma surrounds core - more realistic than 

vacuum 
 
2. Is there any difference in stability in these 2 cases. 

 
I  0σ =
   might anticipate big difference 
II  σ = ∞

 

3. But! Vac. � 2
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Thus, FFP same as Vac.   might anticipate no difference in stability since 

’s are the same for each. Wδ
 

4. How do we calculate  Minimizing condition is v FFPW , W .δ δ
 

� �
1 1B B∇ × = ∇ ⋅ = 0  “vacuum” fields 
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 and � ( � )1 = ∇ × ξ ×B B  

 
5. In the FFP we must check that a well behaved �1B  always gives rise to well 

behaved ξ . This is an additional constraint that can make the FFP more 

stable 
 
6. Example: cylindrical screw pinch 
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a. if k, m are such that F 0≠  in FFP region then ξ  is well behaved and 

 v FFPW Wδ = δ
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b. Usually, however F  in FFP for external modes. Then,  is 0= ξ
unbounded       leads to infinite energy. This is not an allowable 
displacement 

 
     
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. Calculation must be redone with new boundary condition � ( )1r sB r 0= . 

Thus is an additional constraint, which is equivalent to placing a 
conducting wall at sr r=  
 
external       internal mode with wall at singular surface. 

 
d.  FFP is more stable than Vac if ∴ ( )sF r 0=  in FFP region. 

 
7. But !! most realistic case is neither vacuum nor FFP, but a plasma with a 

small resistivity  
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Careful analysis choose that ξ  is bounded at the resonant surface. 

 
∴  Stability boundary is the same as Vacuum case, but growth rate is smaller,  

depending upon resistivity 
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Summary 
 
 Vacuum: certain stability boundary, growth rate T Rν∼  
 
 Ideal FFP: same stability boundary, growth rate if k B 0⋅ ≠  
 
   much more stable ( )0γ =  if  k B 0⋅ =  

 
 Resistive FFP: same boundary as vacuum but 
 

 MHD
MHD

RES

0 1
ν

⎛ ⎞τ
γ γ <⎜ ⎟

τ⎝ ⎠
∼ ν <  

 

22.615, MHD Theory of Fusion Systems                                                                                 Lecture 19  
Prof. Freidberg                                                                                                                 Page 10 of 
10 
 


