
22.615, MHD Theory of Fusion Systems 
  Prof. Freidberg  

Lecture 18 
 

1. Derive  for general screw pinch Wδ
 
2. Derive Suydams criterion 

 
Screw Pinch Equilibria 
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Stability 
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1. Carry out calculation in terms of r z, , , ,θξ η ξ → ξ ξ ξ&  
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2. Check Incompressibility 
 

a. B B
B B⊥ ⊥

ξ ξ⎛ ⎞
∇ ⋅ ξ = ∇ ⋅ ξ + ∇ ⋅ = ∇ ⋅ ξ + ⋅ ∇⎜ ⎟

⎝ ⎠

& &  

 

b. B ⋅ ∇  scalar z
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 scalar z
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 scalar 

 

     Define z z
mB m

F kB k B, k e
r r

θ
θ= + = ⋅ = + ke  

 
     B∴ ⋅  scalar = ι  scalar ∇ F

 
c. To make 0∇ ⋅ ξ =  to minimize Wδ , we must choose ξ&  so that 

F 0
B⊥

ξ
∇ ⋅ ξ + ι =&  or 

 
B
F ⊥
ι

ξ = ∇ ⋅ ξ&   

 
d. If k and m are such that F 0≠  for 0 r a< < , then ξ&  is bounded and we 

can choose 0∇ ⋅ . This is the usual situation for external modes ξ =

 
e. Suppose k and m are chosen so that F=0 at isolated internal points 

. Usual case for internal modes. 0 r a< < ξ&  has the form 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 At r ,  is not bounded (not allowable), but only at one point s ξ&
 
 
 
 

22.615, MHD Theory of Fusion Systems                                                                                 Lecture 18   
Prof. Freidberg                                                                                                                Page 2 of 12 



f. Resolution: Choose 12 2

BF

F

ι
ξ = ∇ ⋅ ξ

+ σ
&   

  
  is now bounded, but ξ& ∇ ⋅ ξ  is no longer zero. 

 
 
 
 
 
 
 
 
 
 
 
g. Calculate contribution to FWδ   
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 Assume now that σ  is very small, but finite 
 

 Main contribution to 
2

pγ ∇ ⋅ ξ  comes from around r sr=  where F 0  ≈

 
h. Expand about r : F Fsr= sr F r r r F r x, x r r( ) ( ) ( ) ( )' '

s s s s= + − ≈ = −  

 
         0 
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i. For small but finite  , W 0σ δ →&
 
Conclusion: Even for isolated singular surfaces, the plasma compressibility 

term makes no contribution to  Wδ
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Minimize Remainder of  Wδ
 

1. Separate terms  
 
  ( ) r rQ B Q e⊥ ⊥ Q eη η⊥

= ∇ × ξ × = +  

 
   rQ F= ι ξ
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∫  line bending 
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 Simplify 
 

1. Note that  appears only algebraically. Complete the squares and minimize 
with respect to  

η
η
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G r 2kB

rk B
θ

⎡ ⎤η = ξ + ξ⎢ ⎥⎣ ⎦
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2. Remaining Wδ  
 

   ( ) ( ) ( ) ( )
2a ' '

F 0 0
W 2 R dr a r b r c r⎡ ⎤δ = π π ξ + ξξ + ξ⎢ ⎥⎣ ⎦∫ 2

 
      θ   z         (1) 

 
a. integrate (1) by parts 
 
b. lots of algebra, using equilibrium relation 
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Complete Calculation by Computing s vW , Wδ δ  
 

1. Assume no surface currents:          sW 0δ =  
 

2. Vacuum Energy: � � �2
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Summary  
 
  δ  for general screw pinch W
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∫ a  

 
      internal modes:     ( )a 0ξ =

 
      external modes:   ξ ≠  ( )a 0
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Suydam’s Criterion   
 

a. Necessary condition for stability 
 
b. Tests against localized interchanges (external modes) 

 
c. Only necessary, because a special “localized” trial function is used 

 
 
Mathematical Motivation 
 

a. Choose k such that ( )sF r 0=  for same rs in s0 r a< <  

 

b. Around this point 
2

'
2
0

2k
F 0,g p 0

k
≈ ≈ <  destabilizing  

 
c. A localized mode can still give a finite contribution if 'ξ  is large. 

 
         large 

  'fξ
              small 
 
Physical Motivation 
 
 
 
 
 
 
 
 
 
 
   

a. interchange plasma and field: plasma wants to expand, field lines want to 
contract 

 
b. interchange is more difficult with shear. As interchange takes place, field lines 

are bent from one surface to another. 
 
Derivation 
 

1. look as  in the vicinity of FWδ sx r r= −  
 

2. assume internal mode so that ( )a 0ξ =  

 
3. assume localized internal mode  ( ) ( ) ( ) ( )' '

s s sF r F r F r x F r x≈ + =
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     ∴   
' 2

0
s 22 2 '

z

2 pq
D

r B q

μ
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6.  
22 ' 2

sW dx x D⎛ ⎞δ ∝ ξ − ξ⎜ ⎟
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a. if  stability '

sp 0, D 0> < →

0

 
b.  assume  interesting case,  stability? 'p 0< sD >

 
7. Vary  to determine minimizing ξ→ξ + δξ ( )rξ  

 

      ( )'2' 2 'dr F g F g 0⎛ ⎞ξ + ξ → ξ − ξ =⎜ ⎟
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      ( )'22 ' 2 2 '
s sdx x D x D 0⎡ ⎤ξ − ξ → ξ + ξ =⎢ ⎥⎣ ⎦∫

 
8. We can solve Euler–Lagrange equation: assume  Pxξ =
 
 ( ) sp p 1 D 0+ + =  
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1
2

1,2 s
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p 1 4
2 2

= − + − D  

 
9. Need to distinguish two cases: s sD 1  4, D 1 4> <
 

10. Note: 
22 ' 2 2 ' 2p 1

sx D dx x px +⎛ ⎞ξ + ξ = − ξξ = −⎜ ⎟
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1
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1
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2
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11. Consider 1 4  sD 0− <
 

 ( ) ( )1 r 2 r1 2

1
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x
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12. Show oscillatory root always leads to instability by choosing a modified trial 
function 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

a. In I and V,  '
I V0 W Wξ = ξ = →δ = δ = 0

 

b. In II and IV  satisfies ξ ( )'2 '
sx D 0ξ + ξ =  

 

  ( )' 22 ' 2 ' 2 2 '
s s0 x D dx dx x D x⎡ ⎤ ⎡ ⎤= ξ + ξ ξ = − ξ + ξ + ξξ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦∫ ∫  

 
         
         W−δ  

22.615, MHD Theory of Fusion Systems                                                                                 Lecture 18   
Prof. Freidberg                                                                                                                Page 10 of 12 



  
2

1

r2 '
II r

W x∴ δ = ξξ = 0  

 

     
4

3

r2 '
IV r

W xδ = ξξ = 0

r

 

 
c. Region III  '

0 const, 0ξ = ξ = ξ =
 

   
22 ' 2 2

III s s 0 3 2W x D dr D r r r⎛ ⎞δ = ξ − ξ = − ξ Δ Δ = −⎜ ⎟
⎝ ⎠∫

 

d. by assumption s
1

D  
4

>

 
  ∴δ  instability 2

s 0W D r 0= − ξ Δ < →
 
 

e. when sD  no oscillatory solutions exist. One root is not allowable, the 
other is allowable 

1 4<

 
    

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Conclusion: when sD 1 4<  not localized, oscillatory trial functions can be       
chosen. System is stable to localized interchanges 
 
when sD  localized treat functions exist which make  1 4> W 0δ <

 

s
1

D
4

<  Suydams criterion 
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2
z 0

q
rB 8 p 0

q

⎛ ⎞
+ 'μ >⎜ ⎟⎜ ⎟

⎝ ⎠
 for stability 

 
Destabilizing term: 8 p'

0 →  pressure gradient, bad curvature μ
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Stabilizing term:  
2'

2
z 2

q
rB

q
→  shear, line bending magnetic energy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Oscillation theorem 
 

 If suydams criterion is violated, there is always a zero mode, macroscopic 
mode with maximum growth rate. 
 
This is significance of Suydams criterion. 
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