22.615, MHD Theory of Fusion Systems
Prof. Freidberg
Lecture 17: Stability of Simple Function

Memory of the Energy Principle
8W >0 for all displacements implies stability

The potential energy is given by

SW = W + 8Wg + W,
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SW, == [dr=", VxB, =V B, =0 n-By| =0
2\/ MO SW

¢ =Biv(ng)-(ng)n(n-v)B

Only Appearance of ¢,

1 2
W, =5 [1p|v-g
a. Minimizing condition : close g, as V~§:O[§~V(V~§) :0]

b. Possible if operator B-V can be inserted.

c. Not possible : symmetry B-V =0 V-§:V-§L+§-V§”

B
¢%V'E¢
d. Not possible : closed line case: V-&=F(p),V-¢= <V-i> = m —

*s

Final Step: Intuitive Form of dW;
1 |Q|2 « 2 .

W == [dr|=—gl - (3xQ) +rp|v-¢ +(§l -Vp)v-gl standard

Mo - B — _
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a. [Q - ‘&‘2 +lf

b. £1-3xQ=(E1xb)-Q, ) +(& -1, xb)Qy

d. Q =Q~V><(§_J_><B)

=b-(B-vE, -5, -VB-BV-4,)

=—B(V~i—2i-5)+% §,-Vp x=b-Vb

2. Substitute task
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+B_‘V'§L+2E.>L'E
Ho - -

1. line bending >0

2. magnetic compression >0

3. plasma compression >0

4. pressure driven modes + or -

5. current driven modes + or -
Classes of MHD Instability

1. Internal or fixed boundary: plasma surface is held fixed during perturbation:
n-§ < = 0, same as a conducting wall
>

2. External or free boundary: plasma surface is allowed to move: n-§, # 0. Often
the most severe stability criteria

3. Current driven modes: also called kink modes. J, is the most dominant

destabilizing term. Modes driven by parallel current. Important in tokamaks,
RFP: (K-S limit, saw tooth oscillations, disruptions). In general modes have
long wavelength, low m, n. Cures: tight aspect ratio, low current, packed
current profiles, conducting wall.
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4. Pressure driven modes: kVp dominant destabilizing term. Special cases

interchange or flute, following mode, sausage instability. Kaydoms criterion,
mercuir criterion. Important in tokamak, RFP, stillaratio, EBT, mirror. In general
long || wavelength, short L wavelength. Cures: low g, shear, average

formable curvature (min B, magnetic wall)

Applications Today

1. 0 pinch
2. Z pinch
Procedure

1. Sine equilibrium J,, By, P,
2. Test in compressibility condition for ¢,

3. Minimize 8W with respect to &,

4. If 8W,, > 0 stable
3W,,in <0 unstable

3W_ ., = 0 marginally stable
0 Pinch

1. Equilibrium: p(r),B,(r),J,(r)

Hodp = _B'z
2 2
p(r)+ B; (I’) :B_O
2u, 2pg

2. Stability: &(r) =£(r)e™*“ : Fourier analyze analog 6 and z

3. Check compressibility

V-é=V-Q_L+V~(§”§X)=V-3’;_L+lk§“ (éﬁéz)
Set V.£=0: a”:-iv.g_l OK if k = 0

4. Evaluate terms in dW
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a. x=b-Vb=—e, =0 no pressure driven terms

9
oz~

b.

—

, =3-b=1Je,-e =0 nocurrent driven terms
5. Conclusion:

3Wr >0 sum of positive terms

8W, =0 no surface currents

oW, >0 positive term

0 pinch is stable at any value of B
worst case: W —-0 as k—0

Z Pinch

1. Equilibrium: p(r),Bq (r),, (r)

. Be '
p+—2(rB,) =0
uor( 0)

2. Stablllty é([) — é(r)lme-ﬂkz
3. Check incompressibility: || -6

v.ézv.g_LJrv.&”ge:V_é_l+lm§|l

§|| = &e

But v-£=0 E;”r—#rV'E_,L ok if m=0

4. Evaluate terms in dW

a. J =1-b=1J,e, e, no current driven terms
b. E:|2~V|2:+99.V9921i§e:_&
r 00 r

-2(&, - vp)(&l - x) = (_2arp')[—%rj - 27p'|§r|2 <0 if p <0
destabilizing term
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c. B =VX(\§_lX§)=§.vg_L—<:_L.v5—§v.a_L

_imB, By L Bogy_ 1mB,
r r / r

mB
Blz = . EJZ

By [* =

[Iérl ~[eaf” ]

d. V'i_¢+2‘:_¢'52%(r‘2r)' + kg, —%:r(%J + kg,

(] rete e 2] e (a_r)]
r r r

12

BZ‘V-Q_J_-kZa_J_-E‘Z—Bg{
e. V-£=0 (form=0)

( E"r) +1kg, (for m=0)

w7 =1 g+ Ko (v <Ko e Y| (m-0)

(e[

Examine m =0
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Minimize W
1. Note that &, only appears algebraically: complete squares

&, terms:

2|7 2 *
a, 20 (m_z + k2]|e’;z|2 +1krE, [E’—rj —1krg, [i_rj
Ho | T r r
. 2
&
r

wkr (&,
«(7)

c. Choose ¢, = Ill((—zr[%j minimizing condition
0

b, Biko

Ho

k2r2
ko

2. Then (& =¢)

0

L m? +k2r? |

)

only appearance of k

2

2Rp2 !
W = o [ ar|[gf | TRt « 2P | g
2, r r

ro) m? sk

( 2n2 ! 2p2
SW. = —= [dr ERp By |, 2hoP | MBy
Ho r

3. k appears only in a satisfying term this term is minimized by choosing

k? -

4. Then

1 2(m?B2 2p,p
SWF :mjdtkﬂ ( rze + r(_)
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5. Stability condition =
= local trial function
if Ind = 0
2n2
-rp' < By
2, :
N . « . - 1 Be 1
6. Simplify using equil relation pop'+ —>(rB,)' =0
r
B, (rBy)' =B, [rz %) =r’B, (Br—ej +2B§
2 2\ g2
or =r B—9 +B§ = & +B—e
2 2 2
7. Then
R .
r—[%j <I(m-4) (1)
By r 2
or
(ng) 1
2
<=m° -1 (2)
Bg 2( )
8. Typical profile
By By Y rB2)
(T) (r85)

i/r
l 4 \/ : \/r

From (1) | stability for m=>2

From (2) |instability for m=1| near small r, k— «
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9. Physical Mechanism

—— Weakened Tension

Increased Tension

Examine m=0

12

1. W = %jd{ B3 12, [ + kre, {%} —krg, (é—rrj
0

5

k ©ok 2uop
e K () (7| 2P |ar|2}

+HoYP

Note again that &, only appears algebraically: complete squares.

2. &, terms:

*

. re;
a. k? (Bg + HO’YP)|§Z|2 + |:B§r [%J + UgYP Q] (lk&z) +C.C

2

1[B§r[§;]l oy ) } 1

Bg + BoYP Bg + BoYP

b. (Bg + HOYP) kg, -

Bgr(%} + UgYP —— (nt’r)

3. Only appearance of &, is in a stabilizing term. 8W is minimized by choosing

5, =————|B} (é—r] r ar)
k(B§+uovp)[ M) THer®
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4. 3W: becomes (g =¢&)

£e" +Ee
SWF:ﬁ d_{ZMop |§| Bz ‘a‘ %_( :E-' )

A -
+YoP ‘&.‘2 + |§—|2 - —( : )

1

—m‘(Bé +1g7P) & — (BF — novp)

E2
r

| 71, 2 uovp)
21, r r? HotP Bz + 1gYP

+S5 B RN, vp/Bﬁ)»{’lz/wovp
N

.
_Ljdr 2P |2

5. Thus:

2 2
A [ d[@{zuorp' + —42“°yp59 }
PATRS r By + novp

6. Stability condition

P 2Bf
p uoyp+B§

Instability criterion usually violated in experiments. For Benneth profiles we
require y > 2 for stability

Instability:
a. competition between increased magnetic pressure and increased particle
pressure
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b. sausage instability

Increased Tension

plasma pushes back less (3 degrees of freedom) than magnetic

pressure compresses plasma (2 degrees of freedom)

c. Stability boundary is independent of k

d. Mode is catastrophic experimentally.

e. Can be stable theoretically if p’ is weak enough. However, reliance on “y " is

suspicious. Not easily stabilized experimentally

Conclusion
0 pinch stable

z pinch unstable
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Single Particle Picture why does curvature enter?

Consider m=0 mode

© 000000

____________________ Unperturbed State

(fluted surface)

Interchange Flux and Plasma

1. Calculate drifts

V. ~viBxvB_ mvi 1 28, __mViB_'ee
RS 2¢ B} ‘2 2e B
V. =_ﬁEXB _ mvﬁ e xe, _ mvﬁ

K ™ B er Be erBe =z

. . \%
2. Assume isotropic plasma vﬁ = 5 =V

2 BZ , 2 B '
VO:mvz B g :_mvz r(_ej
eBj \ eB; r

' B - N .
In most profiles [TGJ <0: vp isin same direction as curvature drift.
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Curvature drift creates ExB drift which enhances perturbation

If the curvature drift is in the opposite direction, ExB drift would oppose the

perturbation — stability

\
o

Cusps:

— Good Curvature

®

- 4— Cusp Lines

Summary

K
— TR
Bad Curvature

TP
K 1 l Good Curvature

Bad

e (500
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