
22.615, MDH Theory of Fusion Systems 
Prof. Freidberg  

Lecture 16: Variational Principle  
 
Variational Principle 
 

 2 W
K
δ

ω =  

 

( )
*1

W F
2

δ = − ξ ⋅ ξ∫ dr  

 
21

K d
2

= ρ ξ∫ r  

 
 Advantages: 
 

1. allows use of trial functions to estimate 2ω  
 
2. can be applied to multidimensional systems efficiently 

 
Disadvantages: 
 
1. still somewhat complicated 
 
2. gives more information than minimum required 

 
Energy Principle 
 

1. Sometimes we only want to know whether the system is stable or not 
 
2. No great need to know eigenvalues 2ω  

 

3. Growth rate are very fast 2 2 2
Tr v a∼ ∼  (10 μ sec) 

 
4. Experimental times  10 msec – sec’s. ∼

 
5. Since MHD instabilities are very strong, it is more important to know 

whether system is stable or not, rather than know the precise growth rate 
(which can be easily estimated) 

 
6. In these cases, the variational principle can be simplified further, yielding 

the Energy Principle. This is a simpler variational procedure which 
accurately gives stability boundaries but only estimates growth rates. 

 
The Energy Principle  
 

1. Variational Principle 2 W
K
δ

ω =  

If all  the system is stable 2 0,ω >
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2. Energy Principle  for all  W 0δ ≥
 allowable displacements, the system is stable. 
 Any displacement which makes W 0δ < ⇒  instability 

 
Proof: (based on normal modes) more general proof in text book 
 

1. Assume complete set of normal modes, orthonormal 
 

 ( ) *2
n mn n H

F d−ω ρξ = ξ ρξ ⋅ ξ = ξ∫ mnr  

 
2. Arbitrary trial function 
 
 n n

aξ = ξ∑  

 
3. Evaluate Wδ  
 

 ( ) ( )* **
n m n m

1 1
W F a a F

2 2
δ = − ξ ⋅ ξ = − ξ ⋅ ξ∑∫ ∫ dr  

 

 ( )** 2
n m mn m

1
a a

2
= − ξ ⋅ −ω ρξ∑ ∫  

 

 22
m m

1
a

2
= ω∑  

 
4. If a trial function can be found which makes W 0δ < , then at least one 

 instability 2
m 0ω < →

 

5. If all trial function make W 0δ > , then all 2
m 0ω > →  stability 

 
Extended Energy Principle 
 

 ( )*1
W F

2
δ = − ξ ⋅ ξ∫ dr  

 
 ( ) 0 1 11 0F J B J Bξ = × + × − ∇p  

 

 ( ) ( ) ( )B B B B p rp⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ∇ × ∇ × ξ × × + ∇ × × ∇ × ξ × × ∇ ξ ⋅ ∇ + ∇ ⋅ ξ⎣ ⎦⎣ ⎦ ⎣ ⎦  

 
1. Valid with wall on plasma 
 
 

pS
n ⋅ ξ = 0         
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2. Valid with vacuum region 
 
 

pS
n B 0⋅ =c fe h  

 

 
p

2

0 S

B
p 0

2
+

μ

c fd gd gd ge h
=    

 

w
1 S

n B 0⋅ =  

 
3.  above not convenient because of complicated boundary condition with 

wall, and no explicit appearance of Vacuum energy. 
Wδ

 
4. These are resolved by Extended Energy Principle  

 
Extended Energy Principle  
 

1. Rewrite  introduce natural boundary conditions 1Wδ
 

2. ( ) ( ) *

0 0

1 B B
W dr B B p rp

2
∇ ×⎡ ⎤δ = − ∇ × ∇ × ξ × × + × ∇ × ξ × + ∇ ξ ⋅ ∇ + ∇ ⋅ ξ ⋅ ξ⎡ ⎤⎣ ⎦⎣ ⎦ μ μ∫ ⎤

⎦   

 
      integrate by parts         integrate by parts 
 

3. Define ( )1Q B B≡ = ∇ × ξ ×  

 

( ) ( )
2

2 * * 1

0 0

Q B B1 1
W dr rp J Q p ds n rp

2 2

⎧ ⎫ ⎡ ⎤⋅⎪ ⎪⎡ ⎤δ = + + ∇ ⋅ ξ − ξ ⋅ × + ∇ ξ ⋅ ∇ − ⋅ ξ ∇ ⋅ ξ −⎨ ⎬ ⎢ ⎥⎣ ⎦μ μ⎣ ⎦⎪ ⎪⎩ ⎭
∫ ∫

 
4. Separate , : b⊥ ⊥ξ ξ ξ = ξ + ξ& &  

 
5. It is easily shown that ( )b J Q p 0⎡ ⎤× + ∇ ξ ⋅ ∇ =⎣ ⎦  so that last term becomes  ⋅

 
 ( )* J Q p⊥ ⎡ ⎤ξ ⋅ × + ∇ ξ ⋅ ∇⎣ ⎦  

 
     integrate by parts 
       
 note ( ) ( )Q B  B⊥= ∇ × ξ × = ∇ × ξ ×

 
  p p⊥ξ ⋅ ∇ = ξ ⋅ ∇  
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6.  FW W B.Tδ = δ + .
 

 

2
2* *

F
0

Q1
W dr J Q rp p

2 ⊥ ⊥

⎡ ⎤
⎢ ⎥δ = − ξ ⋅ × + ∇ ⋅ ξ + ξ ⋅ ∇ ∇ ⋅ ξ
⎢ ⎥μ
⎢ ⎥⎣ ⎦

∫ ⊥  

 
 Standard form of the fluid energy 
 

 * 1

0

B B1
BT dS n rp p

2 ⊥ ⊥
⎡ ⎤⋅

= ⋅ ξ − ∇ ⋅ ξ − ξ ⋅⎢ ⎥μ⎣ ⎦∫ ∇  

 
7. Introduce natural boundary condition 
 

 
2

0

B
p

2
+ =

μ

c fd gd gd ge h
0   linearize 

 

 
� � �

p

22
11

1
0 0 0S

B B B B B
p p

2 2 0

B⎡ ⎤⎡ ⎤⎛ ⎞⋅ ⋅⎢ ⎥+ + ξ ⋅ ∇ + = + ξ ⋅ ∇⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥μ μ μ⎢ ⎥⎝ ⎠⎣ ⎦ μ
⎣ ⎦

 

 
 rp p⊥− ∇ ⋅ ξ − ξ ⋅ ∇  

 
8. Substitute above 

 
� �( )1*

s
0

B B1
BT W n dS

2

⋅
= δ + ⋅ ξ

μ∫  

 

 ( )
2

*
s n

0

1 B
W dS n p n b b

2 2 ⊥

⎛ ⎞
δ = ⋅ nξ ξ ⋅ ∇ + ξ = ξ + ξ + ξ ×⎜ ⎟⎜ ⎟μ⎝ ⎠

∫ &

c fd gd gd gd ge h
 

                 only term which contribute 
 

 
22

0

1 B
dS n n p

2 2

⎛ ⎞
= ⋅ ξ ⋅ ∇ +⎜ ⎟⎜ ⎟μ⎝ ⎠
∫

c fd gd gd gd ge h
 

 
 Surface term is non-zero only if surface currents flow 

 

9. 
� �

* 1
F s

0

B B1
W W W dSn

2
⋅

δ = δ + δ + ⋅ ξ
μ∫  

 
10. Show last term is related to vacuum energy 

 

11. �2 2
1 1v

0 0v

1 1
W B dr A

2 2
dr= ∇ ×

μ μ∫ ∫δ =  

             0 

 ( )* *
1 1 1

0

1
dr A A A A

2
⎡ ⎤

= ∇ ⋅ × ∇ × − ⋅ ∇×∇ ×⎢ ⎥μ ⎣ ⎦∫
&

1  
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 l �*

1 1
0 S

1
dSn A B

2
⎛ ⎞= − ⋅ ×⎜ ⎟μ ⎝ ⎠∫  

 

12. But: since � l �
1 1n B n A n B⋅ = ⋅ ∇ × = ⋅ ∇ × ξ ×  

 

 then l1A B⊥= ξ × + ∇φ  Choose � ( )1B n 0⋅ × ∇φ =  as gauge 

 

 and ( ) �*
1v

0

1
W dS n B

2 ⊥δ = − ⋅ ξ × ×
μ ∫ B  

 

    � �*
1

0

1
dS n B B

2
= ⋅ ξ

μ ∫ ⋅

V

 

 
Extended Energy Principle 
 
  F SW W W Wδ = δ + δ + δ
 
Boundary Conditions on trial functions 
 

 �
w

1
S

n B 0⋅ =  

 

 � ( )
p pp

1 1 S SS
n B n B n B⋅ = ⋅ = ⋅ ∇ × ξ ×  

 
  ( ) ( ) ( )

pS
n n n B B n⎡ ⎤= − ⋅ ξ ⋅ ⋅ ∇ + ⋅ ∇ ⋅ ξ⎣ ⎦  

 
 depends only on n ⋅ ξ  

 
 pressure balance conditions not required  natural boundary conditions →
 
Final Step  
 
 Intuitive form of  FWδ
 

1. Standard form OK 
 
2. Intuitive form gives more insight. 

 

3. ( )
2

2* *
F

0

Q1
W dr J Q rp p

2 ⊥ ⊥

⎧ ⎫
⎪ ⎪δ = − ξ − × + ∇ ⋅ ξ + ξ ⋅ ∇ ∇ ⋅ ξ⎨ ⎬
μ⎪ ⎪⎩ ⎭

∫ ⊥  

 

  
2 22

Q Q Q⊥= + &  

 

22.615, MHD Theory of Fusion Systems                                                                                 Lecture 16 
Prof. Freidberg                                                                                                                   Page 5 of 9 



  ( )* * *J Q b Q J Q J b⊥ ⊥ ⊥ ⊥ξ ⋅ × = ξ × ⋅ + ξ ⋅ ×& & ⊥  

 

  now: ( )b p
J J B

B⊥
× ∇

= × p= ∇  

 
   ( )Q b B⊥= ⋅ ∇ × ξ ×&  

 
     ( )b B B B⊥ ⊥ ⊥= ⋅ ⋅ ∇ξ − ξ ⋅ ∇ − ∇ ⋅ ξ  

 

    ( ) 0B 2
B⊥ ⊥ ⊥
μ

= − ∇ ⋅ ξ + ξ ⋅ κ + ξ ⋅ ∇p  

 
 Substitute back 
 
    1  2                  3  4  5 
 

( ) ( ) ( )
2

2 2 2 * *
F

0 0

Q1 B
W dr 2 rp 2 p J b Q

2
⊥

⊥ ⊥ ⊥ ⊥ ⊥

⎡ ⎤
⎢ ⎥δ = + ∇ ⋅ ξ + ξ ⋅ κ + ∇ ⋅ ξ − ξ ⋅ ∇ κ ⋅ ξ − ξ × ⋅⎢ ⎥μ μ⎢ ⎥⎣ ⎦

∫ & ⊥

V

  
1. line bending > 0   shear alform wave   
 
2. magnetic compression > 0 compressional alform wave 

 
3. plasma compression > 0  sound wave 

 
4. pressure driven modes + or – 

 
5. current driven modes (kinks) + or – 

 
Summary 
 
 Energy Principle:  F SW W W Wδ = δ + δ + δ
 
  for all allowable displacements  stability W 0δ ≥ →
 
  for any allowable displacement  instability W 0δ < →
 
 Minimize  with respect to three components of Wδ ξ . 

 
Incompressibility 
 

1. Because of the simple way in which ξ&  appears in Wδ , it is possible to 

minimize once for all with respect to ξ&  and eliminate it from the 

calculation. 
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2. Only appearance of ξ  &

 

 
2

W dr rpδ = ∇ ⋅ ξ∫&  

 
3. Let ξ →  ξ + δξ& & &

 

4. Vary 
B

W
B⊥δ ξ = ξ + ξ& &  

 

 ( ) ( ) B
W dr rp

B
⎛ ⎞δ δ = ∇ ⋅ ξ ∇ ⋅ δξ⎜ ⎟
⎝ ⎠∫& &  

 
       integrate by parts 
 

  ( )dr B rp
B

δξ
= − ⋅ ∇ ∇ ⋅ ξ∫ &  

 

  ( )dr rpB
B

δξ
= − ⋅ ∇ ∇ ⋅ ξ∫ &  

 
5. Several minimizing condition 
 
  ( )B 0⋅ ∇ ∇ ⋅ ξ =  

 
6. If B ⋅ ∇  is non-singular then 
 
  0∇ ⋅ ξ =  (obvious) 

 

  
21

W rp
2

0∇ ⋅ ξ →∫&δ =  

 
7. Two cases where ∇ ⋅  cannot be set to zero ξ

 
8. Special symmetry 

 

Example: Z pinch  ( )B B r eθ θ=    ( )im ikze rθ+ξ ξ∼  

 

  
imB

B ⋅ ∇  
B r B r

θ

θ

ξ ξ ξ∂
= =

∂θ
& & &

 

  For m 0  B 0
B

ξ
= ⋅ ∇ =&

 

  Note: B B
B B⊥ ⊥

ξ ξ
∇ ⋅  ξ = ∇ ⋅ ξ + ∇ ⋅ = ∇ ⋅ ξ + ⋅ ∇& &
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 In special symmetry ⊥∇ ⋅ ξ = ∇ ⋅ ξ  and nξ  does not appear. The term 
2

rp ⊥∇ ⋅ ξ  

must be maintained for the rest of the minimization. 
 

9. Closed line (periodicity constraints). Choose so 0ξ ∇ ⋅ ξ =&  

 

  
B

B B
B l⊥

ξ ∂ξ
⋅ ∇ = −∇ ⋅ ξ =

∂
& &  

 

  dl
B B

⊥ξ ∇ ⋅ ξ
= −∫&  

 

In general ( ) ( )l L l
B B

ξ ξ
+ ≠ →& &  no periodicity  

 
Solution  

 
B 0⋅ ∇ ∇ ⋅ ξ =  

 
( )F p∴ ∇ ⋅ ξ =   

 
  homogenous solution 

   

 ( )B F
B ⊥

ξ
⋅ ∇ = −∇ ⋅ ξ +& p  

 

 
( ) ( )

l l

0 0

F p dl dl
dl dl F p

B B B B
⊥ ⊥ξ ∇ ⋅ ξ ∇ ⋅ ξ

= − + = − +∫ ∫ ∫&

B∫  

 
 In periodicity choose 
 

 ( )
dl
BF p

dl
B

⊥

⊥

∇ ⋅ ξ
= < ∇ ⋅ ξ > =

∫
∫

v
v

 

 

 Then 
2 21 1

W rp dr rpF
2 2

dr∇ ⋅ ξ =∫ ∫&δ =  

 
21

W dr rp
2 ⊥δ = < ∇ ⋅ ξ >∫&  

 
 
 Only a function of ξ  ⊥
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Summary of internal modes in a straight tokamak 
 

1.  stable m 2≥
 
2.  must use for nm 1, n 1= = 1= , requires ( )q 0 1>  for stability 

 
3. internal modes do not limit ,β or I ( )( )q a , but clamp ( )q 0 1≈ , by sawtooth 

oscillations 

4. To show instability we needed to calculate   2 4
2 4W e W Wδ = δ + ∈ δ

&

   0 
           must 
 
Consider now external modes 
 

1. Vacuum no force free fields 
 
2. m=1 Kruskal Shafranov limit 

 
3. High m external kinks 
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