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Lecture 1: Derivation of the Boltzmann Equation 

Introduction 

1.	 The basic model describing MHD and transport theory in a plasma is the Boltzmann-Maxwell 
equations. 

2.	 This is a coupled set of kinetic equations and electromagnetic equations. 

3.	 Initially the full set of Maxwell’s equation is maintained. 

4.	 Also, each species is described by a distribution function satisfying a kinetic equation 
including collisions. 

5.	 The equations are incredibly general and (incredibly)2 complicated to solve. 

6.	 Our basic approach is to start from this general set of equations and then simplify them by 
restricting attention to the relatively slow time scales and large length scales associated with 
MHD and transport. 

7.	 The end result is a set of “simpler” fluid equations which evolve the electromagnetic fields E 
and B and the fluid quantities in time. 

8.	 The fluid equations will contain certain transport coefficients (e.g. ) which are calculated 
by means of a small gyroradius expansion of the kinetic equations. (More about this later in the 
term). 

9.	 Keep in mind that the “simpler” fluid model turns out to be a set of nonlinear, three 
dimensional, time dependent equations. Thus, the model is still enormously difficult to solve. 

10. As the models are developed during the lectures, there will be a large number of applications, 
almost entirely aimed at magnetic fusion. This is important in helping to understand how fusion 
plasmas behave, as well as providing a down to earth foundation for the model development 
which tends to be somewhat formal at times. 

11. In the first part of model development, no distinction is necessary between MHD and 
transport. However, after the fluid equations are derived, MHD and transport are separated by 
making a finer scale distinction between the long time and large length scales involved. 

12. Since the entire MHD-transport model is based on the Boltzmann-Maxwell equations, the first 
step in the theoretical development is a derivation of the Boltzmann equation. For simplicity a 
simple heuristic derivation is presented. 

Heuristic Derivation of the Boltzmann Equation 

1.	 Plan of attack 

a.	 Derivation is based on a common sense conservation of particle relation. 

b.	 Derive conservation of particles for a simple fluid in physical space. 
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c. Generalize to a 6-D phase space assuming only long range forces are present- that is, 
neglect collisions (Vlasov equation). 

d.	 Add in the effect of collisions (Boltzmann equation). 

e.	 Discuss general conservation properties of the collision operator. 

2. Conservation of particles in a fluid. Consider the 1-D geometry illustrated below 

3.	 Conservation of particles states that the gain in the number of particles in a fixed Eulerian 
volume element is given by


gain in particles = flow in - flow out + sources - sinks


4.	 Evaluate terms separately 

gain in particles in a time 

flow in of particles in a time 


flow out of particles in a time 


sources – sinks in a time 
 (source density/time) (Vol) 

5.	 Taylor expand assuming small 

a. 

b. 

conversion of particles in 1-D. 

6.	 Generalize to 3-D 
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a. 

b. 

Kinetic Generalization 

1.	 Now generalize the concept to a 6-D phase space. 

dimensional density. 

-D volume element. 

2.	 Particles flow into or out of the physical part of the volume element with velocity v. 

3.	 Particles accelerate into or out of the velocity part of the volume element with an 
acceleration a. 

4.	 Note that v and x are independent coordinates (variables). At any point x, a particle 
can have any velocity v. 

5.	 However, in general . A particle at x moving with velocity v will have a known 
acceleration as determined by Newton’s law and the specific force field under consideration. 

6.	 Same conservation law applies


gain in particles = flow in – flow out + sources – sinks


7.	 Evaluate terms separately for 1-D case :


gain in a time 


flow into physical space = 

flow out of physical space = 

flow into velocity space = 

flow out of velocity space = 


sources – sinks = 


8.	 Taylor expand as before

a. 

b. 

Note that (independent coordinates) 

9.  Generalize to 3-D 

a. 
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b. 

The Vlasov Equation 

1.	 Now consider a for a plasma. In most cases of interest a can be divided into two parts: 
a=as (short range) +al (long range) 

2.	 Short range forces act over a distance . These are the collisions. 

3.	 Long range forces act over distances . For , the short range collisional forces are 
shielded out by the Debye effect. 

4.	 Assume for now that collisional effects are negligible. Also assume that the number of 
particles in a Debye sphere is large so that a statistical description makes sense. Even so, the 
Debye length is assumed small compared to the gradient lengths of interest. Similarly, the 

time scales of interest are assumed much slower than 

5.	 All but the first collisional assumptions are well satisfied in fusion plasmas. 

6.	 In the collisionless limit 

al (x, v, t) = 

where E(x, t) and B(x, t) are the smooth long range electric and magnetic fields. 

7.	 The quantity reduces to 

= 0 

8.	 When there are no sources or sinks present , the 6-D conservation relation reduces to 

9. This is the Vlasov equation. It has the simple interpretation that 

along the trajectory 
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10. The density in phase space is conserved moving with the particle orbits. 

 varies smoothly as the particles11. As f evolves in phase space the volume element 
move 

12. With only long range forces acting, no particles suddenly enter or leave the phase space 
volume element due to collisions. Thus, moving with the particles, the quantity is by 
definition conserved. 

13. Furthermore, the condition is equivalent to the fact that is by itself conserved. 
Thus, not only is the total number of particles but the conserved, but the density f as 
well. This is the significance of the Vlasov equation. 

The Boltzmann Equation 

1. The Boltzmann equation makes use of the same assumption as the Vlasov equation 
concerning the number of particles in a Debye sphere and the smallness of 


and
 . However, it does not neglect the effect of collisions. 

2. The conventional approach is to place all terms with a, on the right-hand side of the equation 

and simply call them 

3. 	Since collisions can occur between both like and unlike particles, the collision term is 
usually written as a sum over all species. Specifically, we write 

. 

where Cjk represents the change in fj due to collisions with species k. 

4. In this formalism the Boltzmann equation for species j can be written as 

5. These kinetic equations are coupled to Maxwell’s equation as follows 
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6. Here, the smoothed charge and current densities determining the long range electric and 
magnetic fields are calculated as follows 

7.	 The Boltzmann-Maxwell equations are a set of nonlinear, 6-D, time dependent

integro-differential equations – indeed a complex model.


The Collision Operator 

1.	 At this point the collision operators Cjk have yet to be determined. In fact a good part of the 
course will involve procedures for determining Cjk and then solving for the corresponding fj 
using appropriate expansions. 

2.	 However, even without giving specific forms for Cjk, it is possible to proceed, at least in a 
formal manner, and determine a set of “simplified” fluid equations by taking moments of the 
Boltzmann equation. 

3.	 Certain terms in the moment equations are written in terms of the Cjk. These terms can be 
somewhat simplified by invoking general conservation relations involving Cjk. 

4. These conservation laws arise from the assumption that the collisions characterized by Cjk are 
purely elastic – Coulomb collision to be specific. 

5. Inelastic collisions representing ionization, recombination, charge exchange, alpha production, 
etc. are assumed to be contained in the source term sj. Collisions of this type do not play as 
dominant a role in fusion plasmas as Coulomb collisions and hence do not need to be 
modelled with as much detail and 
accuracy. 

6. For purely elastic two body Coulomb collisions it is accurately assumed that collisions take 
place locally, at a single point in space. It then follows that the following conservation laws 
are exactly satisfied. 

a.	 Conservation of particles in like and unlike particle collisions 

b. Conservation of momentum between like particle collisions 

c. Conservation of energy between like particle collisions 
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d. Conservation of total momentum between unlike particle 
collisions 

e. Conservation of total energy between unlike particle collisions 

7. With this introduction we are now ready to calculate the moment equations. 
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