Boron Neutron Capture Therapy (BNCT) History Pre-clinical Research Clinical Trials

Glioblastoma multiforme

 ~ 7000 new cases/yr in the US.

Standard treatment: Surgery followed by radiation therapy.

Median survival is 10 to 12 months.

Glioblastoma multiforme

Boron Neutron Capture Therapy

- Glioblastoma: the invasive nature makes treatment difficult.
- BNCT has the potential to selectively target these infiltrating tumor cells.

The BNCT Reaction

2.33 MeV of kinetic energy is released per neutron capture: initial LET 200-300 keV/µm

Alpha particle

Thermal cross-section = 3837 barns (that's *very* big...)

Boron Neutron Capture Therapy

- 1. Selectively deliver ¹⁰B to the tumor.
- 2. Irradiate the tumor region with low energy neutrons (n_{th}) .
- 3. The short range of the ${}^{10}B(n,\alpha)^7Li$ reaction products restricts most of the dose to the boron-loaded cells.

BNCT Pre-History

1932: Chadwick discovers the neutron

1935: Taylor and Goldhaber describe the ¹⁰B(n,α)⁷Li reaction

1936: Locher proposes BNCT as a cancer therapy

1951: Brookhaven Graphite Research Reactor

1951: W. Sweet, Chief of Neurosurgery at the MGH initiates BNCT clinical trial

Brookhaven National Laboratory

BNCT Clinical Trial: ~1953

BGRR Clinical Trial: 1951-1959

BNCT Clinical Trial: 1959-1961

Brookhaven Medical Research Reactor

Beam shutter

BMRR schematic

Failure of the First BNCT Trials

- Poor penetration of thermal neutrons in tissue.
- Boron levels in blood higher than those in tumor.
- Viable tumor was found at depth following doses that exceeded the tolerance of normal surface tissues.
- BNL and MIT clinical trials were stopped in 1961.

Improved boron delivery agents

L-BPA

(p-borono-L-phenylalanine)

O = B

) = BH

BSH

 $(Na_2B_{12}H_{11}SH)$

Improvements in neutron beams

Thermal < 0.4 eV

Epithermal 0.4 eV-10 keV

Improved penetration

Surface sparing

BNCT dose components

- Boron dose from products of 10 B(n, α) 7 Li reaction
- γ dose from beam contamination and neutron capture reaction in hydrogen: ${}^{1}H(n,\gamma){}^{2}H$
- Nitrogen dose from products of ¹⁴N(n,p)¹⁴C reaction
- Fast neutron dose from recoil nuclei (mostly protons)

Thermal Neutron Cross Sections

Nuclide	Cross section (barns)
$^{10}\mathrm{B}$	3837
¹¹ B	0.005
¹² C	0.0035
1H	0.33
14N	1.70
³⁵ Cl	43.6
²³ Na	0.534
¹⁵⁷ Gd	254,000
¹⁵³ Gd	0.02

Photon-Equivalent Doses

IAEA Workshop (6/99) recommends that BNCT doses be expressed as a weighted dose D_w , with the unit Gy, using the following convention:

$$\mathbf{D}_{\mathbf{w}} = \mathbf{w}_{\mathbf{b}} \cdot \mathbf{D}_{\mathbf{b}} + \mathbf{w}_{\mathbf{g}} \cdot \mathbf{D}_{\mathbf{g}} + \mathbf{w}_{\mathbf{n}} \cdot \mathbf{D}_{\mathbf{n}} + \mathbf{w}_{\mathbf{p}} \cdot \mathbf{D}_{\mathbf{p}}$$

Currently:

weighting factors termed **RBE** or **CBE** factors; BNCT doses expressed in **Gy-Eq** units.

Beam components: depth-dose profile

- total dose
- ∇ boron capture (13 μg 10 B/g)
- gamma
- fast neutrons
- **♦ nitrogen capture**

BMRR epithermal beam, 3 MW reactor power

The boron delivery agent

BPA concentrates in tumor to levels 3.5 - 4 times higher than blood or brain.

¹⁸F PET study:adapted fromImahori *et al*.JNM, 39, 325, 1998.

Rat 9L gliosarcoma

BPA biodistribution

tumor 100 blood brain liver $\mu g^{10} B/g$ tissue 80 muscle 60 40 20 0 5 10 15 20 25 0 Time (hr)

BNCT

Selective tumor ablation

Horseradish peroxidase perfusion

Rat 9L gliosarcoma: 1 year post-BNCT MR images

Dose response: ED₅₀ endpoint

- x rays
- ▲ thermal neutrons
- thermal neutrons+ BPA

Compare isoeffective doses (ED₅₀)

BNCT radiobiology

Tissues studied:

Weighting Factors Used in Clinical Trial

tumor	3.8
• brain	1.3
• spinal cord	1.3
• skin	2.5
oral mucosa	2.5

¹⁰B biological effectiveness factors range from 1.3 to over 5.

An RBE of 3.2 is used for the high-LET beam components in all tissues.

Dog brain irradiations

Isodose contours

Dose volume histograms

Coderre et al., J. Neuro-Oncol., 48, 27, 2000.

Dog brain irradiations

Asymptomatic MRI changes

6 mos. post-BNCT

Massive edema at 5 mos.

Coderre et al., J. Neuro-Oncol., 48, 27, 2000.

Dog brain irradiations

- Average whole brain dose, single-field irradiation.
- 1 Gy = 1 joule/kg
- 2 Gy = conventional daily fraction for tumors (x 30d).
- 10 Gy whole body (brain) used in bone marrow transplant.

The BNCT procedure

Surgery 3-4 weeks prior to BNCT.

BNCT is given in a single session lasting less than 1 hr.

- 2-hr BPA infusion
- BNCT starts ~ 45 min after end of infusion

Monte Carlo-based treatment planning

Target volume (tumor + 2 cm)

Brain

- One field versus two fields
- Peak dose, hemisphere dose, whole brain average dose

MITR-II showing current and new epithermal beam locations

Brain Doses

BNL BNCT clinical trial.

Reference (peak) doses in brain (maximum dose to a 1 cm³ volume).

Doses escalated in 20% increments.

Chanana, et al., Neurosurg., 44, 1182, 1999.

Brain dose

BNL BNCT clinical trial:

Whole-brain average doses.

CNS side effects observed in 2 pts in Protocol 4b and all pts in Protocol 5.

Brain: Dose Volume Histograms

- Escalation of the dose in humans.
- Comparison to the maximum tolerated dose in dogs.

Normal Brain Tolerance

Patient survival data

O = alive

= alive with recurrence

X = deceased

1 - 4a = single field 4b = two fields 5 = three fields

Approximate median survival with standard therapy

(Curran, JNCI, 85, 704, 1993)

Status as of 5/03

Patient survival data

Clinical Trial Summary

- Escalation of neutron exposure may have reached CNS tolerance limits
- The BPA-F dose has only been marginally escalated so far.
- No tumor dose-response has been observed.

Tumor Doses

Minimum dose to the contrastenhancing tumor volume.

- Calculated Gy-Eq doses are very high: 40, 50, 60 Gy-Eq in a single-fraction.
- Tumor recurrence has been local in the majority of cases.
- Tumor necrosis has been documented histologically.

Tumor: Questions

- Does surgery affect BPA uptake in tumor?
- Do all tumor cells take up boron?
- Do infiltrating tumor cells accumulate boron as well as the main tumor mass?

Dose Escalation in BNCT

• Increase boron concentration

Increase neutron exposure

BPA pharmacokinetics

• Cells in culture take hours to fully load with BPA

Wittig et al., Radiat. Res. 153, 173, 2000

BPA Dose Escalation

- Rat 9L gliosarcoma
- Infusion rate constant:250 mg BPA/kg/hr
- Vary infusion time
- Sample tumor, blood 1 hr post-infusion

Joel et al., J. Neuro-Oncol., 41, 213, 1999.

Improve BPA delivery to tumor

- Rat 9L gliosarcoma
- Infiltrating tumor cells take hours to reach the same BPA level as the main tumor mass.

Ion microscopy at Cornell Univ.; D. Smith G. Morrison.

Clinical trial in Studsvik

6-hr BPA Infusion: 900 mg/kg

WB ave dose 3-6 Gy-Eq

JNO, 62, 135, 2003

BNCT Patient Survival

Studsvik: 6-hour BPA infusion

JNO, 62, 135, 2003

Currently...

- BNCT clinical trial for GBM in Sweden evaluating 6-hour BPA infusions.
- MIT clinical trials now open:
 - Two BNCT fractions on consecutive days
 - GBM or melanoma metastatic to the brain
 - Cutaneous melanoma.
- Other BNCT clinical trials underway in Finland, Japan, The Netherlands, Czech Republic.

Clinical Trials: New Directions

Other Sites
Head and Neck
Brain Metastases (multiple)
Lung?

Criteria

poor local control sensitive normal tissues limit dose current therapies not effective

Clinical Trials: New Directions

Retreatment: BNCT for recurrent GBM

```
Combinations

BPA + another boron compound

(GB-10, BSH, CuTCPH, BOPP)

BPA + radiosensitizer

Gd-texaphyrin

BPA + photons

whole brain photons

radiosurgery
```