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10.44J, 22.52 J, 8-575J  Statistical Thermodynamics of Complex Liquids  
(Spring 2004)  Problem Set 2 (Prof. Chen)        Due April 1. 
 
1.  Starting from the general expression for the scattering field in VV geometry derived in the class: 
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 is the wave no of light in vacuum, and   ∆ε(
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Q , t)  the Fourier transform of the dielectric 

constant fluctuation in the fluid. We can calculate the differential cross section for the light scattering as: 
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 For one-component liquids we can relate the dielectric fluctuation to the density fluctuation by: 
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is the number density fluctuation and ρ = N / V  the average number of the fluid molecules per unit 
volume. We can also Fourier transform Eq.3 to obtain 
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(a) Show that the differential scattering cross section per unit volume can be transformed into a practical 
form: 
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(b)  Given the fluctuation theorem which states that: 
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show that  
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 is called the Rayleigh ratio in the literature. 

 For two-component liquids such as a macromolecule of molecular weight Mw and index of 
refraction n suspended in a solvent of index of refraction n0, one likewise expands the    in terms 
of the concentration fluctuation    as: 
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so that 
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(c) Show that for Q , → 0
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where ∆  is the average concentration fluctuation over the volume V. C
(d)  For the two-component system we thus have: 
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(e)  Show from thermodynamic fluctuation theory that: 
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and use Vant Hoff's equation of the states 
 

   Π =
NAkBTC

MW
        (13) 

where NA is Avogadro's number and C the concentration of the solute in g/ml., the differential cross 
section per unit volume is finally written as: 
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where H is an experimental constant defined as: 
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An important point to observe is that for an ideal solution, the Q = 0 limit of the intensity is proportional 
to the molecular weight of the solute. 
 
(f)  Extend the cross section formula to a more general non-ideal solution case where  
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and get the often quoted formula in the literature of light scattering 
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The left hand side quantity vs C plot at a given temperature would be a straight line giving the molecular 
weight from the zero intercept, and the slope of the line gives the second virial coefficient. This is called 
a Zimm plot in the literature. 
 
2.  Consider small angle scattering from a disordered, isotropic material. Starting from the known 
expression (derived in the class) for the scattering intensity per unit volume 
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(A) Show that one can transform the expression to a from 
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where ρ(r) is the scattering length density (sld) defined as  
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We  now specialize to a two-phase system. Let the scattering length density of phase 1 be ρ1 ≈ ρw( ) and that of 
the phase 2, ρ , and denote by ∆ρ2 ≈ ρo( ) = ρ1 − ρ2 . The linear and square average scattering length densities of 

the medium are given by: 
 
  ρ = Φ1ρ1 + Φ2ρ2         (21) 
  ρ2 = Φ1ρ1

2 + Φ2ρ2
2         (22) 

 
where Φ  and  are the volume fractions of phase 1 and 2 respectively.  1 Φ2

(B) From these definitions and the fact that Φ1 + Φ2 = 1 , derive a useful relation for the mean square 
fluctuation of the sld in the medium: 
 
  ρ r( )− ρ ( )2 = ρ2 − ρ 2 = Φ1Φ2 ρ1 − ρ2( )2 = ∆ρ( )2Φ1Φ2    (23) 

 
Next, consider fluctuation of the sld η(r) = ρ(r) − ρ  
(C) Show that   
 
  ρ 0( )ρ r( ) = η 0( )+ ρ( ) η r( ) +ρ( )  

 = η 0( )η r( ) + ρ2 .       (24) 
 
Therefore, except at Q=0, we can write: 
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where η2 = ∆ρ( )2 Φ1Φ2  according to Eq.23. We call Γ r( ) the normalized Debye correlation function defined 

as: 
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(D) Show from Eq.25, the existence of the "invariant", 
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The most important properties of the Debye correlation function of a two-phase system are:  
 
(i)   , .       (28) Γ r = 0( ) =1 Γ r → ∞( ) = 0
 
The latter condition follows from the fact that at large separation η 0( )η r( ) ≈ η 0( ) η r( ) = 0 . 
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where S/V is the total interfacial areas per unit volume in the medium, a very important property in a micro-
phase- separated system or in a porous material. Try to prove this theorem (ii) by reading the lecture notes. 
 There are two simple models for the Debye correlation function in a porous materials or micro-phase-
separated systems which are only approximate: 
  
(a) Debye model (one parameter model):  ΓD r( ) = exp −r / ξ( ). (30) 

 
(b) Teubner-Strey model (two parameter model):  ΓTS (r) = exp −r / ξ( )jo (kr)  (31) 
 
(E) Calculate the scattering intensity (analytical expression) for each case and sketch its graphical form. 
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(F) Relate the S/V to the model parameters in each case. 
 
 
3. In the lecture  notes we derive Porod’s law, which is asymptotically  valid for any system with smooth 
internal interfaces (i.e. for Q>> reciprocal of the persistence length of the surface). It can be stated as follows : 
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It was derived from consideration of the short distance behavior of Γ(r) . In the following you are asked to 
derive  it directly from the scattering intensity  formula of neutrons  or x-rays from a sharp interface separating a 
medium with a sld ρ  from another medium with  a sld 1 ρ2 .Imagine a sample with a volume V, having a large,  
flat, internal interface of an area S. Take this interface to lie in the x-y plane. The scattering intensity for a given 
direction of   
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where the form factor is given by 
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(A) Let ρ(z) = ρ2 ,   for  z > 0;  and ρ(z) = ρ1,  for  z < 0 . Integrate  over  z first to get 
 

 
  
F(

r 
Q ) =

(ρ1 − ρ2 )
iQz

dx dy exp[i(Qxx + Qyy)]∫∫ =
(ρ1 − ρ2 )

iQz
(2π) 2 δ(Qx )δ(Qy ) .(35) 

 
(B) Show that 
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(C) Now, the measured intensity distribution I(Q) is the orientational  average of the above calculated  I(

r 
Q ),  

namely, one has to average over all directions of the Q-vector. Take the direction of the Q-vector to be 
in the direction defined by polar coordinates  (ϑ,ϕ) . Then, 
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 Show that the above integration leads to precisely the Porod’s law given in the beginning of the 
problem. 
 This particularly beautiful derivation of the Porot’s law was first given by P. De Genne. 
  
 
 
 
 
 
 
 


