8.575J, 10.44J, 22.52J Statistical Thermodynamics of Complex Liquids
(Spring 2004) Problem Set 1 (Prof. Chen) Due March 18.

1. Given the following table for the scattering lengths of common elements:

Isotope Hydrogen Deuterium Carbon Nitrogen Oxygen

Beon (10712 cm) -0.37423 0.6674 0.66484 0.936 0.5805

estimate the molecular volume (from the molecular weight and density) and then calculate the scattering
length densities of the following molecules, in unit 0f1010 cm-2: H,0, D20, Octane, Deuterated octane,

and Pluronic P-84, a tri-block co-polymer, [(PEO)19 (PPO)43 (PEO)19], where PEO = -(CH,),0-, having
a molecular volume 72.4 A and PPO = -(CH,);0-, having a molecular volume 95.4 A3,

2. Show that the form factor of a spherical particle with an internal core of radius R1 and a scattering
length density (sld) p,, surrounded by a shell with an outer radius R and sld p,, immersed in a solvent

of sld ps is given by:
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Use this result to calculate and plot the normalized particle structure factor f’(Q) of a co-polymer

micelle having an inner core radius R; and an outer radius R,. In a core-shell model of the micelle [Y.C.

Liu et al, Phys. Rev. E 54, 1698 (1996)], the inner and outer radii can be determined from the
aggregation (N) and hydration (H) numbers of the micelle. Plot the P(Q) for the case of N = 63 and H

=290.

3. Show that the form factor of a randomly oriented prolate spheroid, with semi-major and minor axes
of aand b, is given by:
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where (Ap) is the contrast between the particle and the solvent, u the cosine of the angle between the
major axis of the spheroid and the Q-vector.



4. Derive a normalized particle structure factor IB(Q) of a uniform cylindrical particle of radius R and
length L. Assuming that the particle is randomly oriented with respect to the Q vector.
(A) Show that:
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In EQ.3, Vp denotes the volume of the particle, I the position vector of an arbitrary point in the

interior of the particle, and u the cosine of the angle between the axis of the cylinder and the Q-
vector. The bracket means that we are considering an average over random orientations of the
particle.

(B) Show that for a long and thin cylinder, one has asymptotic formulae:
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(C) Show that for a flat particle (a lamellar) of QR>>1,
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where L is the thickness of the flat plate.

(D) From Eq.4 and 5, one can conclude that for a long rod a In[Q1(Q)] vs Q2 plot, and for a flat disk,
a In[Q21(Q)] vs Q2 plot, will result in a straight line at large Q with slopes proportional to R? /4 and
L2/12 respectively. Explore additional system parameters you can extract from the intercept at Q =
0.

(E) In polymer literature, another approximate formula is often used. It is the limit when R goes to
zero, the so called "stiff thin rod" limit. Show that:
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Explore graphically the difference between approximations of the last equation and Eq. 3



5. (This problem is added for your interest only. Your answer is optional. In case you solve it,
you will get a bonus points of 20/100)
Scattering intensity of a Gaussian chain. Consider a flexible polymer chain of a contour length L
=Na, where N is the no. of segments and a is the Kuhn length. If the chain makes a random walk in
space, then the mean square end-to-end distance is R? = Na’. For this chain, the distribution of
distances between two links (i,j) is Gaussian, namely,
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In order to calculate the normalized particle structure factor of such chain. (a) Start from the
definition:

RN % Y g

i=1 j=1 =1 j=1
so that we can evaluate the Gaussian average by integrating the exponential phase factor using the
distribution function given by Eq.7. (b) Show first that :
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() Prove a theorem: For an arbitrary function (x),

ZZf(n—n)—Nf(0)+22(N—n)f<n) (10

i=1 j=1

(d) Use the theorem to show that the sum in Eqg.9 can be evaluated as:
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where «a = exp(—= Qza2 ~l-— Qza2 , because Qa is much smaller than unity in practice.
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(€) Show that in the limit N — oo, P (Q) approach the Debye function
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(F) Discuss the small and large Q behavior of Eq.12. In particular, show that:
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