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In a previous lecture we characterized the time evolution of closed quantum systems as unitary, |ψ(t)) = U(t, 0) |ψ(0)
and the state evolution as given by Schrödinger equation: 

) 

d ψ
ii 

| )
= H|ψ

dt 
)

Equivalently, we can find a differential equation for the dynamics of the propagator: 

∂U 
ii = HU 
∂t 

This equation is valid also when the Hamiltonian is time-dependent.
 
As the Hamiltonian represents the energy of the system, its spectral representation is defined in terms of the
 
energLy eigenvalues ǫk, with corresponding eigenvectors |k): H = 

L
k ǫk

iǫkt iǫkt
|k)(k|. The evolution operator is then:


U = k e
− |k)(k|. The eigenvalues of U are therefore simply e− , and it is common to talk in terms of eigen­

phases ϕk(t) = ǫkt. If the Hamiltonian is time-independent we have also U † = U( t), it is possible to obtain an 
effective inversion of the time arrow. 

−

? Question: What is the evolution of an energy eigenvector |k)?
 
First consider the infinitesimal evolution: |k(t + dt)) = U(t + dt, t) |k(t)) = (11− iHdt) |k(t)) = (1− iǫkdt) |k(t)). Thus we have
 
the differential equation for the energy eigenket: d|k) = −iǫk |k), so that |k(t)) = e −iǫkt

dt 
|k(0)).

We can also use the spectral decomposition of U : |k(t)) = U(t, 0) |k(0)) = (
L

h e 
−iǫht |h) (h|) |k(0)) = e −iǫkt |k(0)).

Notice that if a system is in a state given by an eigenvector of the Hamiltonian, then the system does not evolve. 
This is because the state will only acquire a global phase that, as seen, does not change its properties. Of course, 
superposition of energy eigenkets do evolve. 

5.1 The Schrödinger and Heisenberg pictures 

Until now we described the dynamics of quantum mechanics by looking at the time evolution of the state vectors. 
This approach to quantum dynamics is called the Schrödinger picture. We can easily see that the evolution of the 
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state vector leads to an evolution for the expectation values of the observables (which are the relevant physical
 
quantities we are interested in and have access to).
 
From the evolution law for a state, |ψ) → |ψ ′ ) = U |ψ), we obtain the following relation, when expressing the state
 
in the Hamiltonian eigenbasis:
 

 
|ψ)  = 

�  
ck |ǫ i t iǫkt

k

k

) → |ψ ′ ) = e − H |ψ) = 
�

cke − |ǫk
k 

) 

Then the expectation value of an observable A evolves as: 
 

�A) = 
� 

c∗kcj �ǫk|A |ǫj ) → 
�

ck
∗cj �ǫk|A |ǫj ) e −i(ǫj−ǫk)t 

k,j k,j 

Quite generally, we can also write A(t) = ψ(t) A ψ(t) = (Uψ) A Uψ . By the associative property we then 
write �A(t)) = �ψ|(U †AU)|ψ . 

� ) � | | ) � | | )

It would than seem natural t
)
o define an ”evolved” observable A(t) = U †AU , from which we can obtain expectation 

values considering states that are fixed in time, ψ . This is an approach known as Heisenberg picture. 
Observables in the Heisenberg picture are define

|
d 
)
in terms of observables in the Schrödinger picture as 

H  A (t) = U †(t)ASU(t), AH (0) = AS 

The state kets coincide at t = 0: ψ H = ψ(t = 0) S and they remain independent of time. Analogously to the
Schrödinger equation we can define 

|
th
)
e Heis

|
enberg eq

)
uation of motion for the observables: 

dAH 

= −  i[AH , H]
dt 

? Question: Derive the Heisenberg equation from the Schrödinger equation. 
H † S

dA d(U A U) † 

= = ∂U ASU + U†AS ∂U = i(U†H)ASU + U†AS(−iHU). Inserting the identity 11 = UU† we have = 
dt dt ∂t ∂t 

i(U†H H 
UU†ASU − U†ASUU†HU). We define HH = U†HU . Then we obtain dA = −i[AH , HH ]. U and H always com­

dt 

mute for time-independent H, thus HH = H. 

5.2 Interaction Picture 

We now consider yet another ”picture” that simplifies the description of the system evolution in some special cases. 
In particular, we consider a system with an Hamiltonian 

H = H0 + V 

where 
calcula

H0 is a ”solvable” Hamiltonian (of which we already know the eigen-decomposition, so that it is easy to 
te e.g. U −iH0 t

0 = e ) and V is a perturbation that drives an interesting (although unknown) dynamics. In the 
so-called interaction picture the state is represented by 

|ψ) = U (t)†|ψ) = e iH0 t
I 0 S |ψ)S 

where the subscript I, S indicate the interaction and Schrödinger picture respectively. For the observable operators 
we can define the corresponding interaction picture operators as: 

AI (t) = U0
† AS U0 → VI (t) = U0

†V U0

We can now derive the differential equation governing the evolution of the state in the interaction picture (we now 
drop the subscript S for the usual Schrödinger picture): 

∂ ψ I ∂(U † ψ ) ∂U † ∂ ψ
i 

| )
= i 0 | )

= i( ψ + U † | )
) = U †

0 ψ + U †( 0 + V ) ψ = U †V ψ .
∂t ∂t ∂t 

| ) 0 ∂t 
− 0H | ) 0 H | ) 0 | )
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Inserting the identity 11 = U0U0
†, we obtain

∂|ψ)I 
i = U †V U U †

 0 0 0 |ψ) = VI |ψ)I .
∂t

This is a Schrödinger -like equation for the vector in the interaction picture, evolving under the action of the operator 
VI only. However, in contrast to the usual Schrödinger picture, even the observables in the interaction picture evolve 

in time. From their definition AI (t) = U0
†AS U0, we have the differential equation 

dAI = i[ 0, AI ], which is andt 
Heisenberg-like equation for the observable, with the total Hamiltonian replaced by 

H
H0. The interaction picture is 

thus an intermediate picture between the two other pictures. 

S H I 
|ψ) � × � 

A × � � 

Table 1: Time dependence of states and operators in the three pictures 

5.2.1 Dyson Time-ordering operator 

If we now want to solve the state-vector differential equation in terms of a propagator |ψ(t))I = UI (t) |ψ)I , we

encounter the problem that the operator VI is usually time-dependent since VI (t) = U0
† V U0, thus in general UI = 

e−iVI t. We can still write an equation for the propagator in the interaction picture 

dUI
i = VI (t)U I
dt

with initial condition UI (0) = 11. When VI is time dependent and VI (t) does not commute at different time, it 
is no longer possible to find a simple explicit expression for UI (t). Indeed we could be tempted to write UI (t) = 

J t 

e−i VI (t
′  )dt′  

0 . However in general 
eAe B A+B = e if [A, B] = 0,

thus for example, although we know that UI (t) can be written as UI (t, 0) = UI (t, t ⋆)UI (t ⋆ , 0) (∀0 < t ⋆ < t) we have 
that 

J ⋆ ⋆ −i t V (t ′ )dt ′ I −i e 0 

J

t V (t ′ I )dt′⋆  
t = e−i 

J

t V (t ′ )dt ′ −i
J

t V (t ′ )dt ′ ⋆ I It e 0 . Thus we cannot find an explicit solution in terms of an
 
integral.
 
We can however find approximate solutions or formal solution to the evolution.
 
The differential equation is equivalent to the integral equation
 

t
 

UI (t) = 11− i

1
VI (t ′ )UI (t ′ )dt ′
 

0 

By iterating, we can find a formal solution to this equation : 

 t t  t′ 

UI (t) = 11− i 
1

dt′  VI (t ′ ) + (−i)2 
1

dt ′ 
1

dt ′ VI (t ′ )VI (t ′′ ) + . . . 
0 0 0 

1 t 1 t(n−1)

+(−i)n dt ′ . . . dt(n)VI (t ′ ) . . . VI (t
(n)) + . . . 

0 0 

This series is called the Dyson series.
 
Note that in the expansion the operators are time-ordered, so that in the product the operators at earlier times are
 
at the left of operators at later times. We then define an operator T such that when applied to a product of two
 
operators it will return their time-ordered product:
 

 
A(t)B(t ′ ), if t < t ′ T (A(t)B(t ′ )) = 

{

B(t ′ )A(t), if t ′ < t 
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Now we can rewrite the expression above in a more compact way. We replace the limits of each intervals so that 
they span the whole duration {0, t} and we divide by n! to take into account that we integrate over a larger interval. 
Then we can write the products of integrals as powers and use the time-ordering operator to take this change into 
account. We then have:  ∞

(−i)n (1 t )n 
UI (t) = T

� 
dt ′ VI (t ′ )

n! 0n=0 

where we recognize the expression for an exponential 

t{ ( 1 )} 

UI (t) = T exp −i dt ′ VI (t 
′ )

0 

Note that the time-ordering operator is essential for this expression to be correct. 

I t I t(n−1) {

I t 
}

′ (n) 1 ′ ? Question: Prove that dt ′ . . . dt(n)VI(t ) . . . VI(t = T ( dt ′ VI(t ))n for n = 2. 
0 0 n! 0 

5.2.2 Some useful approximate formulas 

Besides the formal solution found above and the Dyson series formula, there are other approximate formulas that 
can help in calculating approximations to the time evolution propagator. 

A. Baker-Campbell-Hausdorff formula 

AThe Baker-Campbell-Hausdorff formula gives an expression for C = log (e eB ), when A, B do not commute. That 
C Ais, we want C such that e = e eB . We have10 

1 1 1 
C = A + B + [A, B] + ([A, [A, B]] − [B, [A, B]]) − [B, [A, [A, B]]] . . . 

2 12 24

The Hadamard series is the solution to f(s) = esABe−sA. To find this, differentiate the equation: 

−sA f ′ (s) = e sAABe−sA − e sABAe−sA = e sA[A, B]e 

′′ (s) −sA − −sA f = e sAA[A, B]e e sA[A, B]Ae−sA = e sA[A, [A, B]]e 

′′′ (s) −sA f = e sA[A, [A, [A, B]]]e 

etc. and then construct the Taylor series for f(s): 

f(s) = f(0) + sf ′ (0) + 
1 
s 2f ′′ (0) + 

1 
s 3f ′′ (0) + ... 

2 3! 

to obtain 
1 12 3sABe−sA e = B + [A, B]s + [A, [A, B]]s + [A, [A, [A, B]]]s + . . . 
2 3!

With s = it and A = H, this formula can be useful in calculating the evolution of an operator (either in the Heisenberg 
or interaction representation or for the density operator). 

10 See e.g. wikipedia for more terms and mathworld for calculating the series. 
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B. Suzuki-Trotter expansion 

Another useful approximation is the Suzuki-Trotter expansion11. To first order this reads: 

A+B A/n B/n)n e = lim (e e
n→∞

Suzuki-Trotter expansion of the second order: 

A+B A/(2n) B/n A/(2n))n e = lim (e e e
n→∞

In general we can approximate the evolution under a time-varying Hamiltonian by a piecewise constant Hamiltonian 
in small enough time intervals: 

U(t, t0) = U(t, tn−1) . . . U(t2, t1)U(t1, t0), t0 < t1 < t2 < · · · < tn−1 < t, 

where we usually take tk − tk−1 = δt and consider the Hamiltonian H to be constant during each of the small time 
interval δt. 

C. Magnus expansion 

The Magnus expansion is a perturbative solution to the exponential of a time-varying operator (for example the 
propagator of a time-varying Hamiltonian). The idea is to define an effective time-independent Hamiltonian by 

J 
−i dt ′ H(ttaking: U = T e 0 

t ′ ) ≡ e−itH . The effective Hamiltonian is then expanded in a series of terms of increasing 
(0) (1) (2) 

order in time H = H + H + H + . . ., so that 

(0) (1) (2) 
U = exp{−it[H + H + H + . . .]} 

J 
−i dt ′ H(t

0where the terms can be found by expanding T e t ′ ) and equating terms of the same time power. In order to 
keep the time order, commutators are then introduced. The lowest order terms are 

1 
� t

H
(0) 

= H(t ′ )dt ′ t 0 
′ 

i 
� t � t

H
(1) 

= − dt ′ dt ′′ [H(t ′ ), H(t ′′ )] 2t 0 0 
′ ′′ (2) 1 

� t � t � t
H = dt ′ dt ′′ dt ′′′ {[[H(t ′ ), H(t ′′ )], H(t ′′′ )] + [[H(t ′′′ ), H(t ′′ )], H(t ′ )]}6t 0 0 0 

The convergence of the expansion is ensured only if �H�t ≪ 1. 

11 See: M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations 

with applications to many-body problems, Comm. Math. Phys. 51, 183-190 (1976) 
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5.3 Spin- 1
2 precession 

We consider the semi-classical problem of a spin-1/2 particle in a classical magnetic field. To each spin with spin 
angular momentum J is associated a magnetic moment µ = γS where γ is called the gyromagnetic ratio, a property 
of each spin-carrying particle (nucleus, electron, etc.). The energy of the system in an external mangetic field is 
(classically) given by µ · B, where B is of course the field. Thus, the system Hamiltonian is simply = γBzSz = ωSz, 
where we take the z axis to point along the external field for simplicity and we defined the Larmo

H 
r frequency for the 

given system. 
If the spin is initially in the state |0), the system does not evolve (as it is an eigenstate of the Hamiltonian). If instead 
it is prepared in a superposition state, it will undergo an evolution. 

|ψ0) = α0|0)+ β0|1) → |ψ(t)) = α(t)|0) + β(t)|1) 

? Question: What are the functions α(t), β(t)? 
1. As |0), |1) are eigenstates of the Hamiltonian with eigenvalues ±ω/2, we know that their evolution is just a phase e ±iωt/2, 
so that α(t) = α −iωt/2 +iωt/2 

0e and β(t) = β0e . 
2. |ψ(t)) = U(t) |ψ(0)), with U = e −iHt = e −iωSzt = 11 cos (ωt/2)− i sin (ωt/2) 2Sz. Then U(t)|0) = (cosωt/2− i sin ωt/2)|0) = 
e −iωt/2|0) and we find the same result. 

? Question: What is the probability of finding the spin back to its initial state? 
  Let’s write the initial state as |ψ)0 = cos(ϑ/2)|0)+eiϕ/2 sin(ϑ/2)|1). Then the evolution is eiωt/2 cos(ϑ/2)|0)+e i(ωt+ϕ)/2 sin(ϑ/2)|1

    
) 

and the probability p = cos 2 (ωt/2) + cos ϑ2 sin2 (ωt/2) In particular, for ϑ = π/4 we have cos2 (ωt/2) (notice that this is an 
eigenstate of the Sx operator). 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

time 

Fig. 4: Spin precession: probability of being in the initial state 

? Question: What is the evolution of the magnetization in the x direction?
 
We want to calculate (Sx(t)). We can use the Heisenberg picture, and calculate U†SxU = Sx cos (ωt)−Sy sin (ωt). Thus we see
 
that the periodicity is T = 2

ω
π while it was 4

ω
π for the spin state (spinor behavior). Then we know that (Sx) = cos(ϕ/2) sin(ϑ)
 

and (Sy) = sin(ϕ/2) sin(ϑ) from which we find (Sx(t)) = cos(ϕ/2 + ωt) sin(ϑ)
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Nuclear Magnetic Resonance 

The evolution of the magnetization is what is usually detected in NMR. The precession of the spin in a large static 
magnetic field creates an oscillating magnetic field that in turns generate a current/voltage in a pickup coil. Fourier­
transform of the signal gives spectroscopic information regarding the Larmor frequency; local modification of the 
magnetic field (due e.g. to electronic field) induces a variation on the Larmor frequency of each nuclear spin in a 
molecule, thus providing a way to investigate the structure of the molecule itself. Before we can have a full vision of 
a (simple) NMR experiment, we still need to answer the question on how we first prepare the spin in a superposition 
state (e.g. in a Sx eigenstate). We will be able to answer this question in a minute. 
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5.4 Examples: Resonance of a Two-Level System 

We have looked at the precession of the spin at the Larmor frequency, which happens if the spin is initially in a 
superposition state. However, the question remained on how we rotate initially the spin away from its equilibrium 
state pointing along the large external magnetic field. Consider then a more general problem in which we add a 
(small) time-dependent magnetic field along the transverse direction (e.g. x-axis): 

BB(t) = Bz ẑ + 2B1 cos(ωt)x̂ = Bz ẑ + B1 [(cos(ωt)x̂ + sin(ωt)ŷ) + (cos(ωt)x̂ − sin(ωt)ŷ)] , 

where B1 is the strength of the radio-frequency (for nuclei) or microwave (for electron) field. 
The Hamiltonian of the system H = H0 + H1(t) +H1

′ (t) is then: 

ω0 ω1 ω1H = σz + [cos(ωt)σx + sin(ωt)σy ] + [cos(ωt)σx − sin(ωt)σy] ,
2 2 2 

where we defined the rf frequency ω1. We already know the eigenstates of H0 (|0) and |1)). Thus we use the 
−iωσzinteraction picture to simplify the Hamiltonian, with U0 = e /2 defining a frame rotating about the z-axis 

† at a frequency ω: this is the so-called rotating frame. Remembering that U0σxU = cos(ωt)σx + sin(ωt)σy , it’s0 

easy to see that the perturbation Hamiltonian in the interaction frame is H1I = U †H1U0 = ω0
1σx. We also have2 

† ωH ′ = U H1
′ U0 = 1I 

1 (cos(2ωt)σx − sin(2ωt)σy). Under the assumptions that ω1 ≪ ω, this is a small, fast oscillating0 2 
term, that quickly averages out during the evolution of the system and thus can be neglected. This approximation is 
called the rotating wave approximation (RWA). Under the RWA, the Hamiltonian in the rotating frame simplifies to 

∆ω ω1HI = σz + σx
2 2 

where ∆ω = ω0 − ω. Notice that if ∆ω is large (≫ ω1), we expect that the eigenstates of the systems are still going 
to be close to the eigenstates of H0 and the small perturbation has almost no effect. Only when ω ≈ ω0 we will see 
a change: this is the resonance condition. In particular, for ∆ω = 0 the new Hamiltonian ∼ σx will cause a spin 
initially in, say, |0) to rotate away from the z axis and toward the y axis. This is how a ”pulse” is generated e.g. in 
NMR or ESR pulsed spectroscopy. For example, if the B1 field is turned on for a time tπ/2 = π/2ω1 we prepare the√ 
state |ψ) = (|0) − i|1))/ 2 that will then precess at the Larmor frequency, giving a spectroscopic signature in the 
recorded signal. 
We want to study the Hamiltonian in the general case. Given the matrix representation 

1 
( 
∆ω ω1 

)
HI = 

2 ω1 −∆ω 

we can find the eigenvalues: 
∆ω 

ωI = ± 
V
1 + (ω1/∆ω)2 . 

2 
There are two interesting limits, on resonance (∆ω = 0) where ωI = ω1 and far off resonance (∆ω ≫ ω1) where 
ωI ≈ ∆ω ∼ ω0. The eigenstates are found (e.g. via a rotation of the Hamiltonian) to be 

|+) = cosϑ|0)+ sinϑ|1)I 
|−) = cosϑ|1) − sinϑ|0),I 

with V 
ωI −∆ω 

V
ωI + ∆ω 

sinϑ = , cosϑ = 
2ωI 2ωI 

Consider the evolution of the state |0) under the rotating frame Hamiltonian. At time t = 0 the two frame coincide, 
so |ψ)I = |ψ) = |0). The state then evolves as 

 ( 
Ωt 
) 

∆ω 
( 
Ωt 
) 

ω1 
( 
Ωt 
)

|ψ(t)) = cos − i sin |0) − i sin |1)I 2 Ω 2 Ω 2 

where we defined Ω = 
V
∆ω2 + ω2 . The probability of flipping the spin (that is, of finding the spin in the |1) state)1)

. Notice that only if ∆ω = 
2
1 sin2 

( 
Ωt 
2 

ω
is then p(1) = 0 we can have perfect inversion (i.e. p(1) = 1 for t = π/ω1.∆ω2 +ω2

1 

Notice that we have defined all the evolutions as in the rotating frame. 
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Fig. 5: Rabi oscillation. Probability of being in the |1) state for different values of the ratio ω1/∆ω 

5.4.1 Dressed states and AC Stark shift 

This Hamiltonian is also used in Atomic physics to describe the ground and (one) excited levels coupled by an 
external e.m. field (for example in the visible spectrum). The evolution of an atom in an e.m. field (here we are 
considering a classical e.m. field, but we will see that we can also consider the quantized version) is usually described 
with the dressed atom picture. This picture (due to Cohen-Tannoudji) describes the atom as dressed by a cloud of 
virtual photons, with which it interacts. 
This atomic TLS has (unperturbed) eigenstates |e) = |0) and |g) = |1) with energies E0 − E1 = ∆ω, which are 
coupled through an interaction ω1/2. When we consider the optical transition of an atom we usually call ω1 the Rabi 
frequency. 

±∆ω The coupling mixes these states, giving two new eigenstates as seen before with energies ±ωI = 
V
1 + (ω1/∆ω)2 ,2 

which is called the effective Rabi frequency. 

Δω Δω+ ω1 
2Δω2 

2 

Fig. 6: Energy shift for small coupling perturbation 

 ω2

If the coupling is small, we can treat it as a perturbation, and the energies are just shifted by an amount δE = 1 
4∆ω . 

 

 ′ ∆ω ω2

That is, the new energies are E = (1 + 1
0 2 ). This shift in the context of a two-level atom dressed by the e.m. 2 2∆ω

field is called the AC Stark shift. It is a quadratic effect that can be seen also as arising (in a more general context)
 
from second order perturbation theory.
 
The perturbed energies are shown in the following diagram. Here we explore the range of the eigenvalues ωI =
 
found before, given a fixed value of the coupling ω1 and a varying splitting ∆ω between the two levels. In r

±
ed are
 

the two perturbed energies, while the dashed lines follow the unperturbed energies. For ∆ω = 0, in the absence of
 
a coupling term, the two eigenstate are degenerate. The perturbation lifts this degeneracy, giving rise to an avoided
 
crossing. The eigenstates are a complete mix of the unperturbed states, yet remain split in energy by the strength
 
of interaction ω1.
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Fig. 7: Dressed atom energies as a function of the splitting ∆ω showing the avoided crossing 

5.5 The wave-function 

We have so far considered systems associated to observables with a discrete spectrum. That is, the system can assume 
only a discrete number of states (for example 2, for the TLS) and the possible outcomes of an experiments are a 
discrete set of values. Although for the first part of the class this is all that we’ll need, it’s important to introduce as 
well systems with a continuous set of states, as they lead to the concept of a particle’s wave function12. This is an 
essential concept in non-relativistic QM that you might has seen before (and probably as one of the very first topics 
in QM). 

5.5.1 Position representation 

The state |ψ) of a point-like particle is naturally expanded onto the basis made of the eigenstates of the particle’s 
position vector operator R. Of course the position of a point particle is a continuous variable (more precisely a vector 
whose components are the three commuting coordinate operators X, Y and Z). The rigorous mathematics definition 
of these continuous basis states is somewhat complex, so we will skip some of the details to instead obtain a practical 
description of the wave function. The basis states |r) satisfy the relations generalizing the orthonormality conditions: 

�r| r ′ ) = δ(r − r ′ ), 
1 
d3 r |r) �r| = 11 

where δ(r − r ′ ) is the three-dimensional Dirac function. Developing |ψ) in the |r) basis yields: 

|ψ) = 

1 
d3 r |r) �r|ψ) 

where we define the wave function (in the position representation) 

ψ(r) = �r|ψ) 

The shape of the wave function depends upon the physical situation under consideration. we may say that the 
wave function describes the state of the particle suspended, before measurement, in a continuous superposition 
of an infinite number of possible positions. Upon measurement of R performed with a linear precision δr, this 
superposition collapses into a small wave packet of volume (δr)3 around a random position r, with the probability 
p(r) = | �r|ψ)|2(δr)3 . 

5.5.2 Momentum representation 

The position representation is suited for measurements of the particle’s position. If one is interested in the particle 
momentum P or velocity V = P/m (where m is the particle mass) it is appropriate to choose the momentum 

12 For a nice introduction to these concepts, see S. Haroche, J.-M. Raimond, Exploring the quantum: atoms, cavities and 

photons, Oxford University Press (2006). In this section we follow their presentation closely. 
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representation and to expand |ψ) over the continuous basis of the momentum eigenstates |p): 

|ψ) = 

1 
d3 p |p) �p|ψ) 

where we define the wave function (in the position representation) 

ψ(p) = �p|ψ) 

A simple system could be describing a single partic

�

le with a well defined momentum. The state is then |ψ) = |p). 
In the momentum representation, w�e  obtain the wave function ψ(p) = δ(p). We can as well describe this state in 
the position representation, p = d3r r r p . Following de Broglie’s hypothesis which associates to a particle 
of momentum p a plane wav

|
e 
)
of wavelen

|
g
)
th 
�
λ
|
 = 
)
h/p, the mom

�

entum eigenstates are plane waves in the position 
representation 

1 
ψ (r) = �r|p) = eip·r/:p . 

(2πn)3/2 

We can take this as the definition itself of the momentum eigenstates; from this definition the well-known commutation 
relationship between position and momentum follow. Otherwise one could state the commutation relationship as an 
axiom and derive the form of the momentum eigenstates in the position representation. 

i · /n
? Question: Show how [r ,

p r

i pj ] = inδ ⇔ ψp(r) = e
ij 

(2π:)3/2 

i)Hint: Show that the momentum generates translations in x and consider an infinitesimal translation. 
ii)Hint: Show that [P x nx, f( )] = −i ∂xf(x). 

−ipxx/n 
1) We start from (px|x) = e 

: 1/2 . Then we have for any translation a 
(2π )

(p |x + a) ∝ e −ipx(x+a)/: −ip :xa/
x = e (px|x) 

We thus recognized p as the generator of translation and the corresponding propagator U(a) = e −ip a/:x . In the Heisenberg 
picture, we can thus show U(a)†xU(a) = x + a11, since ∀|ψ) we have 

(ψ|U†(a)xU(a)|ψ) = (ψ + a| x |ψ + a) = (x)+ a. 

Now we consider an infinitesimal translation δa. The propagator then becomes U(δa) ≈ 11 − ipxδa/n. Calculating again 
U(δa)†xU(δa) = x + δa11, we obtain: 

   iδa δa2p 2 iδa 
x + δa11 = (11+ ipxδa/n)x(11− ipxδa/n) = x + (px − xp) + = x + 2

n 
− [x, p] O(δa )

n2 n 

 Neglecting terms in δa2 we thus proved the commutation relationship [x, p] = in11.
 
2) Now we start from the commutation relationship [x, p] = in and we calculate [x n , p]. We start from the lower powers:
 

 2  [x , p] = x[x, p] + [x, p]x = 2i 3 p] = x[x 2nx; [x , , p] + [x, p]x 2 = 3i 2  nnx ; [x , p] = ni n−1
nx 

Let’s now consider any function of x and its commutator with p. Since by definition we can expand the function in a power 
series, it is easy to calculate the commutator: 

n  ∂f(x)
[f(x), p] = 

� 

f (n)(0)/n![x n , p] = 
� 

f (n)(0) i n−1
nx = in 

n! ∂x 
n n 

Notice that this is also true for the wave function: [p̂x, ψp(x)] = −in∂xψp(x) = p̂(x|p) − (x|p)p̂ = pψp(x) from which, solving 
−ip x/n

the differential equation, (p |x) = e 
x

x
: 1/2 (where the denominator is chosen to have a normalized function). 

(2π )
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5.5.3 Schrödinger equation for the wavefunction 

We have studied already the law governing the evolution of a quantum system. We saw that the dynamics of the 
system is generated by the system Hamiltonian H (the observable corresponding to the total energy of the system), 
as described by Schrödinger equation: 

ind|ψ)
= H|ψ)

dt 

We can express this same equation in the position representation. We want to describe the evolution of a point 
P 2 

particle in a potential V (r) and with kinetic energy T = . The Hamiltonian of this simple system is thus given by2m 
2 pH = V (r) + . By multiplying the Schrödinger equation with the bra �r| we obtain:2m 

ind�r|ψ) P 2 
= in∂tψ(r) = �r| H|ψ) = �r| V (r)|ψ) + �r| |ψ)

dt 2m

Using the relationship 

2 2 ∂
2ψ(x, t)�x|P 2|ψ) = (P 2ψ)(x, t) = (−in∂x) ψ(x, t) = −n ,x x ∂x 

we obtain 
2∂ψ(r, t) n 

in = − ∆ψ(r, t) + V (r, t)ψ(r, t)
∂t 2m 

(where ∆ is the Laplacian operator in 3D). 

5.6 Feynman’s path-integral 

The formal solution of the Schrödinger equation above can be written as |ψ(t)) = U(t, 0) |ψ(0)). Using the position 
representation and the closure relation 

� 
d3r |r) �r| = 11 we can write 

′ ′ ψ(r, t) = 

1 
d3 r �r|U(t, 0) |r ′ )ψ(r , 0), 

−iHt/:where U(t, 0) = e and the matrix element �r|U(t, 0) |r ′ ) is the Green function describing how a localized wave 
′ packet centered at r at time t = 0 propagates at a later time in the potential V (r). This equation represents the 

′ wave function of a single particle ψ(r, t) as a sum of partial waves propagating from r at time 0 to r at time t; it is 
thus the superposition of many different paths taken by the particle during its evolution. The probability of finding 
the particle at r results from a multiple-path interference process. 
This picture of the wavefunction propagation can be used to give a qualitative introduction of Feynman’s path-
integral approach to quantum physics. We do not aim here for a rigorous derivation of that theory, only the main 
concepts will be presented13 . 
We start by expressing the probability amplitude that a particle, initially prepared at point xi, will pass a time 
t later at point xf as the matrix element between the initial and the final state of the system’s evolution opera­
tor: �xf |U(t, 0) |xi). We expand this expression by slicing the time interval t into infinitesimal intervals δt and by 
introducing at each of these times a closure relationship on the position eigenstates: 

�xf |U(t, 0) |xi) = �xf |U(δt)n |xi) = 

1 
dxn..dxk ..dx1 �xf |U(t, t − δt) |xn) �xn| . . . U(δt) |xk ) �xk| . . . U(δt) |x1) �x1|U(δt, 0) |xi) 

1 
= dxn..dx1 �xk|U(δt) |xk−1) . . . 

13 In this section we again closely follow the presentation in S. Haroche, J.-M. Raimond, Exploring the quantum: atoms, 

cavities and photons, Oxford University Press (2006) 
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Fig. 8: Spacetime diagram of the propagation of a particle between two events. Taken from “Exploring the quantum”, S. 
Haroche, J-M. Raimond., 

2

We then evaluate the amplitude xk U(δt) xk 1 in the case U(t) = e−it(p /2m+V )/:. As δt is small, we can approx­−
imate it by the product of the tw

�
o t

|
erms: 

| )
2   

  U(t) = e−iδt(p /2m+V )/: ≈ e−iδtV/:e−  iδtp2/2m: = e− −  e δtp2 iδtV/: i /2m:
(�

|p) �p dp (where we introduced the closure 
expression for the momentum p). We thus obtain the integral 

|

 

)

�xk |U(δt) |xk 1) ≈ e −
 i/:V (xk)δt 

1
2  dp ei/:p(xk−xk−1)e −i/:(p /2m)δt, −

where we used the fact �xk|p) ∝ ei/:pxk . The integral over p is just the Fourier transform of a Gaussian, yielding a 
Gaussian function of xk − xk 1. The probability amplitude is then −

1 
� |  | ) ∝    i/ δt[ 1 m(x −x )2 2  xf U(t, 0) xi dx1dx2 . . . dx e : f n /δt −V (xn)]

n 2 . . . 

1 
  2   2  = dx dx . . . dx ei/:δt[mvn/2−V (xn)] . . . ei/:δt[mvi /2−V (xi)] 

1 2 n

where we introduced the velocity vk = (xk − xk 1)/δt. The probability amplitude for the system to go from x t− i o 
xf in time t is thus a sum of amplitudes one for each possible classical path - whose phase is the system’s action  
S = 

�
Ldt along the trajectory, where L = 1 mv2 − V (x) = mv2 −H is the Lagrangian of the system. This phase is 2

expressed in units of n.
 
We have derived this important result by admitting the Schrödinger equation formalism of quantum mechanics.
 
Feynman proceeded the other way around, postulating that a quantum system follows all the classical trajectories
 
with amplitudes having a phase given by the classical action and has derived from there Schrödinger ’s equation.
 
At the classical limit S/n ≫ 1, the phase along a trajectory evolves very fast when the path is slightly modified,
 
by changing for instance one of the xj . The amplitudes of various neighboring paths thus interfere destructively,
 
leaving only the contributions of the trajectories for which the phase, hence the action, is stationary. If the particles
 
action in units of n is much larger than 1, the particle follows a classical ray. Suppressing the contributions to the
 
amplitude coming from trajectories far from the classical one does not appreciably affect this amplitude.
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