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12.1 Scattering Theory

We want to describe the interaction of radiation with matter as a scattering process. Specifically, we are interested
in calculating the rate of scattering (and then the cross section), which is nothing else than the transition rate from
an initial state (initial state of the matter + incoming particle) and a final state (final state of the target + outgoing
radiation)32.

This is a problem that can be solved by TDPT. Instead of considering a constant perturbation as done to derive
Fermi’s Golden rule, we analyze the case of a scattering potential, in its most general form. We describe a scattering
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Fig. 20: Model for scattering: Left, particle trajectory, right time dependency of the potential.

event as a particle coming close to a target or a medium, interacting with it and then being deflected away. Thus, as
a function of time, the interaction Hamiltonian V' varies as in the figure 20.

39 A very good resource for scattering theory is Chen, S.H.; Kotlarchyk, M., Interactions of Photons and Neutrons with
Matter, (2007), which we follow closely in this chapter.
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We want to calculate the probability of scattering from an initial state to a final state:

oo

Pacatt = | (F1U1(0) i) 2 = | {f] (1 — i / Vi)t + ... ) [i) [

— 00

Notice that we consider negative times as well. This corresponds to the so-called adiabatic switching, since the
interaction is assumed to be turned on slowly from the beginning of time and to go down to zero again for long times.

A. Scattering and Transition matrices

In scattering problems, the propagator U; is usually called the scattering matrix S. To simplify the calculation, we
can assume again that V' is actually time-independent. Then from the first order TDPT we obtain:

(1 SM i) = —ivfi/ ewritdt = —2mid(wy — wi) Vi

— 00

Now consider the second order contribution:

fe%e] t1
(15D 1i) = (/] (ZV|m><m|v> iy [ et [ aeren

— 00 — 00

Notice that the last integral is not well defined for ¢ — —oo. To solve it, we rewrite it as

t1 ezwmlt-i-et

lim dto etlwmi—ie)ta _ iy —f— ‘tl

—00
e—01 J_ e—0t Wi — 1€

Now when taking the limit ¢ — —oo the exponential term e — 0 (thus getting rid of the oscillations). Then we are

left with only . ) »
1 . el(wmi—ie)t
/ dtae™mit2 = lim —fj—

o e—0+ Wi — 1€

and we obtain (setting now ¢ = 0)

ei(“"fi —i€)t1

<f|S2)| _ZZme mz/ dt17:_2726 wz Z f|V|m m|V|>

Wi — 1€ Wi — Wm

Looking at the first and second order of the scattering matrix, we start seeing a pattern emerge. We can thus rewrite

(fI51i) = =2mid(wy —wi) ([T i)

where T is called the transition matrix. Its expansion is given by:

UIT ) = IV D +Zf'v'mf<$'v'> + Y o

Wi — W) (Wi — wn)

m,n

B. Scattering Probability

We can now turn to calculate the scattering probability: Ps = | (f|S]i)|?. In order to obtain the total scattering
probability, we will need to consider all possible final states. We found:

Py = 4m®| (f| T i) [26*(wy — wi)
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We calculate the square of the Dirac function from its definition based on the limit of the integral:

62 (w) ! /00 dte™'§(w) = QL /00 dté(w) = lim i(S(cu)

T or e T J oo t—o0 T
Then although the probability is not so well defined, since it contains a limit:
P, = Jim dnt] (f T i) 6wy — ;)
the rate of scattering is well defined, since it is Wg = Pg/(2t):
Ws = 27 (| T'|i) [6(wy — wi)

This is the rate for one isolated final state. If instead we have a continuum of final states, with density of states p(wy)
we need to sum over all possible final states:

Ws = 2r / 2] (f] T [i} [28(ws — wi)p(wy)dws = 2n] (F] T 1i) [2p(wi)

Notice that to first order, this is equivalent to the Fermi Golden rule.

12.1.1 Cross Section

We now use the tools developed in TDPT to calculate the scattering cross section. This is defined as the rate of
scattering divided by the incoming flux of “particles”:

d%c  Ws(2,E)
dQdE = @,

We consider a particle + medium system, where the particle is some radiation represented by a plane wave of
momentum k. In general, we will have to define also other degrees of freedom denoted by the index A, e.g for photons
we will have to define the polarization while for particles (e.g.e neutrons) the spin.

The unperturbed Hamiltonian is Hy = H g+ H s (radiation and medium). We assume that for ¢ — oo the radiation
and matter systems are independent, with (eigen)states:

with energies:
Hr ki) = hwilki),  Hrlkp) =hwyplky),  Hualmi) = e lki),  Harlmy) = ef |my)

and total energies: I; = hw; + ¢; and By = hwy + €.

Particle
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Scattering Rate

The rate of scattering is given by the expression found earlier:

Wy = —[(f| T |i)|*6(Ef — E;)

2w
h |
As usual, we want to replace, if possible, the delta-function with the final density of states. However, only the
radiation will be left in a continuum of states, while the target will be left in one (of possibly many) definite state.
To describe this distinction, we separate the final state into the two subsystems.

We first define the partial projection on radiation states only, Ty, &, = (k| T |k;). By writing the delta function as
an integral we have:

2m 1 00 i(wp—w; i(ef—e;
Wy = = (gl Tiy g, i) (mil T, mﬂﬁ/ ier—t giler—eit/n

— 00

—i’HRt/ﬁ

Now, since e |m;) = e~"*/"|m;) (and similarly for [ms) we can rewrite

(g Thog g, i) 7= = (g MRNT g e P0 M img) = (mg| Tip i, (1) Ima)
and obtain a new expression for the rate as a correlation of “transition” events:

1 > i(wp—w;
Wy = ﬁ/ @O (| TF(0) lmyg) (mg] T, e (8) )

Final density of states

The final density of states describe the available states for the radiation. As we assumed that the radiation is
represented by plane waves (and assuming for convenience they are contained in a cavity of edge L), the final density
of states is

L 3
plkp)d3ky = (%> kFdkgds2

We can express this in terms of the energy, p(k)d*k = p(E)dEdS2. For example, for photons, which have k = E/hc

we have , ,
L E? L w?
Ey=2(—) —=2(—2) =%
o(E) (27r> h3¢3 (27T> he?

where the factor 2 takes into account the possible polarizations. For neutrons (or other particles such that F =

h2E2N.
2m )

() () B2

or) 2 \2r h3

If the material target can be left in more than one final state, we sum over these final states f. Then the average
rate is given by Wg =, Wyip(E)dEdS? (assuming that Wy; does not change very much in df2 and dE).

Incoming Flux

The incoming flux is given by the number of scatterer per unit area and unit time, @ = %. In the cavity considered,

we can express the time as ¢ = L/v, thus the flux is & = 5. For photons, this is simply & = ¢/ L3, while for massive

particles (neutrons) v = hk/m, yielding ¢ = &
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Average over initial states

If the scatterer is at a finite temperature 7" it will be in a mixed state, thus we need to sum over all possible initial

states:
e~ BHM e—ci/keT

pi=— — P = 4Zie_ﬁ/m

We can finally write the total scattering rate as:

Ws(i — Q2+ dQ,E +dE) = p(E ZPZW,Z

p(E
2

| e (zom)

— 00

‘Pi > W
DS g [ et ml T (0)lmg) (| Ty 8) o) 42 =

where (-) indicates an ensemble average at the given temperature.

12.1.2 Thermal Neutron Scattering

Using the scattering rate above and the incoming flux and density of state expression, we can find the cross section

for thermal neutrons. From s
L mky hk; (mL3)2 k¢
E)/® = — : = —
P(B)/ [(277) h? ] / {mL?’] (27h)3 k;

we obtain

d’c w p(E) 1 [ t 1 (mL3\> ke [,
= h— = ﬁ elwrit T Tei(t)) = — N iwgit TT Tt
dQdw @ @ h2/ < 70 f()> o <27Th2> i /me < i (0) f()>

Now the eigenstates |k; ;) are plane waves, (r|k) = 1y (r) = ¥ /L3/2. Then, defining Q = k; — ks the transition
matrix element is

Tyt = (s TO k) = [ | v, 07 T 00 () = g5 [ e T

and )
Ts(0) = —/ d3re” QT (r,0)
’ L3 L3

Fermi Potential

To first order, we can approximate T' by V', the nuclear potential in the center of mass frame (of the neutron+nucleus).
You might recall that the nuclear potential is a very strong (Vy ~ 30MeV) and narrow (rg ~ 2fm) potential. These
characteristics seem to preclude a perturbative approach, since the assumption of a weak interaction (compared to
the unperturbed system energy) is not satisfied. Still, the fact that the potential is narrow means that the interaction
only happens for a very short time. Thus, if we average over time, we expect a weak interaction. More precisely, the
scattering interaction only depends on the so-called scattering length a, which is on the order a ~ Vyrg. If we keep a
constant, different combinations of V, r will give the same scattering behav1or We can thus replace the strong nuclear
potentlal with a weaker, pseudo-potential Vp, provided this has a much longer range 7, such that a ~ Vorg = VoTo.
We can choose Vj, 7o so that the potential is weak (eV) but the range is still short compared to the wavelength
of the incoming neutron, k7y < 1. Then, it is possible to replace the potential with a simple delta-function at the
origin.
27h?
"

Vr)= ad(r)
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We can also define the bound scattering length, b = t-a ~ %, were m., is the neutron’s mass and A the nucleus
mass number. Then the potential is
- 27h?

My,

Vir) ad(r)
Note that b (interaction length or bound scattering length) is a function of the potential strength and range, which

depend on the isotope from which the neutron is scattered off.

Then to first order the transition matrix is T; = 2mh? b, or more generally, if there are many scatterers, each at a

m,
position 7, (t), we have:

27h? ;
Trit) = 2 > bye'Q7= 0

Mn

The scattering cross section becomes

d20' 1 kf . ; ;
=_ 27 wyit byb, e 1@ Ta(0)giQ Ty (t)
d0do 21k ) .© <Z ve c

z,y

Notice that since the collisions are spin-dependent, we should average over isotopes and spin states and replace b,b,
with byb,.
Scattering Lengths

Notice that b does not depend explicitly on position, although the position determines which isotope/spin we should
consider. What is b,b,? We have two contributions. For 2 = y this is 026, ,,, while for = # v, it is 52(1 — 0zy). We
then write b,b, = (b2 — 1_72)5117! + b= b? + b? which defines the coherent scattering length b. = b and the incoherent
scattering length b7 = 22 — 5", If there are N scatterers, we have > byb, = N(b? + b?).

Structure Factors

Using these definition, we arrive at a simplified expression:

o NP (285(Quw) + 125(Q.0)
d Qdw E, VTSN P

where we used the self-dynamic structure factor

IR Y S A | —iQr2(0) LiQ-1a (t)
SS(Q,W)—%/_Ooe 4 <Nge e

which simplifies to

1 * ; —1Q-r iQ-r
§5(Q) = 5 / ot (@O

if all nuclei are equivalent (same isotope), and the full dynamic structure factor

I Y A | —iQor2 (0) iQ-1y (£)
S(Qaw)—%/_ooe s <NZ€ e v

z,Y

The structure factors depend only on the material properties. Thus they give information about the material when
obtained from experiments.
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Intermediate Scattering Function

From the expressions above for the structure factors, it is clear that they can be obtained as the Fourier Transform
(with respect to time) of the quantities:

1 —iQ-r iQ-r
&@@:N<26kaQM>

T
and

1 —1Q-r 1Q-r
F(Q,t)_ﬁ<ze Q2(0) iQ y<t>>

z,y

These are called the intermediate scattering functions. Going even further, we can write even these function as a
Fourier Transform (with respect to position). For example, for equivalent targets (no distribution in isotope nor
spin), we have

Fs(Q,t) = <e*iQ'T(0)eiQ-r(t)>

By defining a the position of a test particle, n(R,t) = 6(R — r(t)), we can calculate the fourier transform n(Q,t):
n(Q,t) = /d?’reiQ'Rn(R, t) = @)
Then we have Fs(Q,t) = (n(Q,t)n(—Q,0)). We can as well define the van-Hove space-time self correlation function,

Gs(r,t) = /d31"/ (n(r",0)n(r +1r',t))

which represents a correlation of the test particle in space-time. The intermediate scattering function is obtained
from G as

&@w:/fmmamw

These final relationship makes it clear that Fyg is the Fourier transform (with respect to space) of the time-dependent
correlation of the test particle density, n(R,t), which only depends on the target characteristics.

Example I: Resting, free nucleus
We consider the scattering from one resting free nucleus. We need only consider the self dynamics factor and we have
be=0b=0:

d?c kr o oy ky
d0d & @w=oaT

where we introduced the bound cross section o, = 47b? (with units of an area). Since the nucleus is free, the
intermediate function is very simple. From

Fy(@.1) = (e @m0 @)

5(Q,w)

we can use the BCH formula to write

Fs(Q.1) = <efiQ-[r(0)fr(t)]+%[Q~T(0),Q~r(t)]>

Then we want to calculate [r(0),7(¢)] in order to simplify the product of the two exponential. For a free particle,
r(t) = r(0) + £t and [r(0), p| = ih. Then we have

Fs(Q,t) = <efiQ'[r(0)7T(t)]+i%Q2t> = <671Q'p/m> e+i%Q2t
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and for a nucleus at rest (p = 0) we have
Fs(Q.1) = @/

5.Q.) =5 (w-52)

2m

This gives the structure factor

and the cross-section

o _ op kyof  hQ?
dQ4dE ~ 27h ko \Y

Since Q = ks — k;, we have Q% = k? + k; — 2k;kycos?. Also, w = Ef — E; and k2 = 2mE, ~ 2AE, where we
substituted A for the mass of the nucleus.
We can then integrate the cross-section over the solid angle, to find j—%:

d "oy k hQ? Aoy, [P
49 _ / Ly . hQ” o sindd) = 20 / 0(x)dx
dFE 0 27h kl 2m 4El (A—1)2/(A+1)2E;

—2
of = (1+ ) op

2
do :{ op A g (M) E<Ef<E
0,

Defining the free-atom cross section o

| =

we have

- 1AE A+l
dE otherwise

This expression for the cross section can also be obtained more simply from an energy conservation argument.

Example II: Scattering from a crystal lattice

We consider now the scattering of neutrons from a crystal. For simplicity, we will consider a one-dimensional crystal
lattice modeled as a 1D quantum harmonic oscillator. The position » — z (in 1D) of a nucleus in the lattice is then
the position of an harmonic oscillator of mass M and frequency wy,

_ t
T =\ T @)
with evolution given by the Hamiltonian
2 2
p Mwg + 1
= — - hw —
H of T 5 ¢ o(a'a + 2)

If we consider no variation of isotope and spin for simplicity, we only need the self-intermediate structure function is

Fs(Q.1) = e—iQu(0)4iQa(t) _  (=iQ[e(0)=s(t)]+3Qw(0).Qua()
First remember that
0
x(t) = 2(0) cos(wot) + ]]\Z(w)o sin(wot)
for an harmonic oscillator. Then [x(0), z(t)] = [1:(0),p(0)]MLw0 sin(wot) = N}ZO sin(wpt). Also we have
o _ p(O) : _ h —iwot T iwot
Ax(t) = z(t) — 2(0) = 2(0)[1 — cos(wot)] + Moy sin(wot) = Mo (ae +a'e™0")
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We want to evaluate <eiQA””(t)>. Using again the BCH formula, we have

; n —iwgt_ t o iwgt
iQ ae “+a'e *q T *qf 2 T
e 2Mw0( ) eca—a’a e al paa, lal®la,a’]/2

with a = iQ MZ)O e~ ™ot Since [a,al] = 1, we only need to evaluate the expectation value <e—a*afeaa>7 by

expanding in series the exponentials:

<e—0‘*“TeO‘“> _ Z <aTma"> a"(_a*)m

nlm!
n,m

Only the terms with m = n survive (the other terms are not diagonal in the number basis)

o) < ey G

n

Now (a'™a™) = n!((aTa)"), thus we finally have

(ool eon) = 3 ((atayy A mroftote)

This result is a particular case of the Bloch identity, <eA> = {4")/2 where A = aa + Ba' is any combination of the
creation and annihilation operators. Finally, we obtained for the intermediate function:

Fs(Q,t) = e @20)eiQa(®) _ o S () ) o+ L sin(wot)

We can also rewrite this using the Bloch identity Using the Bloch identity, <eA> = e{**)/2 where A = aa + Ba' is
any combination of the creation and annihilation operators, we can rewrite this as

Fs(Q,t) = <efiQ~r(0)eiQ-z(t)> = (¢iQAT) +5[Q(0).Q ()] _ ~Q*(A)/2,+3(Q=(0).Q-w (1)

Now,
(Az?) = (2(0)%) + (2(t)*) + 2 (z(0)z(t)) — {[2(0), z(1)]) = 2(2?) + 2 (x(0)x(t)) — ([=(0), z(t)])

from which we obtain
Fs(Q,t) = @ <m2>eQ2<1(0)x(t)>

If the oscillator is in a number state |n), we have

[2n cos(wot) + e™f)

(2n+1), (x(0)x(t))

2\ __ _
() = 2Mwo = My

If we consider an oscillator at thermal equilibrium, we need to replace n with (n),,. In the high temperature limit,
(n) > 1 and we can simplify:

FS (Q’ t) — ei%hﬂ[lfcos(wot)] 6_Q2W0/26Q2W(t)/2

with Wy = 2]\272:” and W (t) = Wy cos(wot). This form of the intermediate function is the same expression one would

obtain from a classical treatment and the term e~@ "0/2 is called the Debye-Waller factor.
The intermediate structure function is thus a Gaussian function, with a time-dependent width, Wy — W (¢). If Wy < 1
we can make an expansion of the time-dependent term:

; 1
Fs(Q,t) = e~ QW0 /2 ,Q*Wo cos(wot) /2 o, ,~Q*Wo/2 | + Wy cos(wot) + 5W02 cos2(w0t) +o
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Then the structure factor, which is the Fourier transform of Fg will be a sum of Dirac functions at frequencies
w = tnwq corresponding to the n-phonon contribution to the scattering. Here the terms §(w — nwg) correspond to
scattering events where the energy has been transfered from the neutron to the oscillator, while terms 6(w + nwo)
describe a transfer of energy from the lattice to the neutron. The constant term yields §(w) which describes no energy
exchange or elastic scattering (zero-phonon term). Note that the expansion coefficient, Wy can be expressed in terms

of the temperature, since in the high temperature limit, (n) ~ ’,ff’—wf, from which W, = i’;iﬁ
0

In the low temperature limit, (n) — 0. Thus we have:

nQ? iwot hQ2 hQ2
Fs(Q, ) = e~ o (2m[1—cos(uot)[+1-c"0"} . —Q* i35 o oifge™o!

Expanding in series the second term, we have

2 hQ?
FS(Qut)ze « 2Mwo

hQ? 1/ hQ*\° 4
1+ Q elwot+_< Q >e2zwgt+'”

2MWQ 2 2Mw0

Even at low temperature, the structure factor (the Fourier transform of the expression above) is a sum of Dirac
function, also called a phonon expansion. However in this case only terms 0(w — nwp) appear, since energy can only
be given from the neutron to the lattice (which is initially in its ground state).
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12.2 Emission and Absorption

Atoms and molecules can absorb photons and make a transition from their ground state to an excited level. From
the excited state, they can emit photons (either in the presence or absence of a preexisting e.m. filed) and transition
to a lower level. Using TDPT and the quantization of the field we can calculate the transition rates.

12.2.1 Emission

en>

lg,n+1>

Fig. 21: Model for emission: the atom (molecule) makes a transition from the excited level (|e)) to the ground state )|g)) while
the number of photons in the mode k, A goes from n to n + 1.

The rate of emission is given simply by
2w )
W= —[{fIV1]) p(Ey).

We separate the field and the atom (or molecule) levels:

i) = Inea)le) s 1f) = Inea+ 1) lg)
As we are looking at atomic/optical processes the dipolar approximation is adequate and the interaction is given by:
V = —d-E = —¢ - E. Remember the expression for the electric field:

- [ 27 hwy, ; i o
E = Z L3 (ak)\emr + azke 1k7") (S5
kA

The position of the electron which makes the transition can be written as 7 = R+ P, where R is the nucleus position.
Since the relative position of the electron with respect to the nucleus is p < A\, we can neglect it and substitute r
with R in the exponential (p" k< 1). This simplifies the calculation, since R is not an operator acting on the electron
state. Then, from the rate:

2 - -
W= —[{gldle) - (nux + 1] E [rex) *p(Ef)

we obtain
2

> wre Wm +1 (akweikR + aLxefikR) [nkx) (917 e x le) | p(Ey)
BN

(27e)?

W = 73

Since we are creating a photon, only terms o< al survive and specifically the term with the correct wavevector and
polarization: (ngy + 1| ab [nex) = vngx + 1 (all other terms are zero). Then we have:

(27e)?
.3
Since the atom is left in a specific final state, the density of states is defined by the e.m. field:

W= wi (i + 1) (9] 7+ exx |e)]” p(Ey)

p(Ef)dEf = p(hwk)hdwk
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As wi = ck and p(k)d3k = (£)° K2dkd2 = (L£)° % dwd we have:

L\? w?
P<E>—(%> hes

We define the dipole transition matrix element from the dipole operator d = eF, dge = (g|d|e). The rate of emission

is then:
3

o FL 2mhed
From this expression it easy to see that there are two contributions to emission:
Spontaneous emission:

(nkk + 1)|6k)\ dqe' s

w3
=5 h Pt |€kx - dqe| df
which happens even in the vacuum e.m. and stimulated emission:
3
w . -
= T;;ankﬂek)\ . dge|2d(2

which happens only when there are already n photons of the correct mode.

Spontaneous Emission

[&,0)

9,1)

Fig. 22: Geometry of spontaneous emission

Since the photons emitted can have any polarization € and any wavevector k direction, we have to sum over all
possibilities. We assume that the dipole vector forms an angle ¢ with respect to the wavevector k. Then the two
possible polarization vectors are perpendicular to k, as in Fig. 22. The rate is the sum of the rates for each polarization
Wsp = Wi + Wa, each proportional to |d - ex1 2%,

d-er1 = dsindcos, d-ep2=dsindsing

We thus obtain the typical sin? 9 angular dependence of dipolar radiation (also seen for classical dipoles):

Wyp = ge|* sin® 9d 2

27rh 27hed d

The total emission coefficient, or Einstein’s emission coefficient, is obtained by integrating over the solid angle:

3 1 4 w
A, _/ Wds2 = 3|dg8|227r/ (1 —p2)dp = §h_k
-1
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Given the rate, we can also calculate the power emitted, as rate times energy

4w ,
P — hkae = gc—gdge
Notice that this is very similar to the power emitted by a classical oscillating dipole (as if the e.m. field was emitted
by orbiting electrons).

Stimulated Emission

In the stimulated emission, Wk = nk,\Wk’\. Only photons with the same frequency (E) and polarization of the
ones already in the field can be emitted. Then as more photons in a particular mode are emitted, it becomes even
more probable to produce photons in the same mode: we produce a beam of coherent photons (i.e. all with the same
characteristics and phase coherent with each other). If the atoms can be kept in the excited (emitting) levels, we
obtain a LASER (light amplification by stimulated emission of radiation). Of course, usually it is more probable to
have the photons absorbed than to have it cause a stimulated emission, since at equilibrium we usually have many
more atoms in the ground state than in the excited state, ny > n.. A mechanism capable of inverting the population
of the atomics states (such as optical pumping) is then needed to support a laser.

12.2.2 Absorption

The rate of absorption is obtained in a way very similar to emission. The result is

2 - . -
W= 7| (el dlg) - (nual E [nix + 1) 2p(Ey) = s—Lsnp @ - deg|?d 12

2h3

(as <nm|am |nk)\—|—1> = nk)\).

12.2.3 Blackbody Radiation

We consider a cavity with radiation in equilibrium with its wall. Then the polarization and k-vector of the photons
is random, and to obtain the total absorption rate we need to integrate over it, as done for the emission. We obtain

_ _ 4w
Wab = /Q Wab(ﬁ)dﬂ = nk3 ﬁ 3dq€

for a given frequency (and wavevector length). Similarly, the total emission is obtained as the sum of spontaneous
and stimulated emission:

We=Wu+Wsp=np+1)s—%

In these expression ny is the number of photons in the mode k. Since we assumed to be at equilibrium, nj depends
only on the energy density at the associated frequency wy. The energy density is given by the energy per volume,
where the energy is given by the total number of photons times their energy, E = nyp(wy )hws:

u(wy) = hwpp(wr)ng /L3
Then, from the density of states p(wg) = 2 (—) 2[de = = 2w2 we obtain

2me
w23 (wn)
ng = —=u(w
k Tio? k
The rates can then be written in terms of the energy density and of Einstein’s coefficients for absorption and emission:
4 72
Bab = gﬁ(ﬁ — Wab = Babu(wk)
4 w,?; 9
Bem - Bab; Ae = g%dge — Wem - Ae + Bemu(wk)
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Detailed Balancing

At equilibrium, we need to have the same number of photons absorbed and emitted (to preserve their total number).
Then N.WE, = N,WE . Using Einstein’s coefficient, we have N.(A+uB) = N,Bu which yields N. A = uB(N,— N,).
This is the principle of detailed balancing.

We can solve for the energy density: u = A/B

Ny/Ne—1

. But from their explicit expressions we have A/B = TZL; and from

. . . . . Lo -8
the condition that atoms are in thermal equilibrium, their population ratio is given by % == B];Z = e ABg—Ee) —

ePhwr (since hwy is the exact energy needed for the transition from ground to excited state). Finally, we obtain the
energy density spectrum for the black-body:

_ hwd/m?c?

u(wg, T) = B — 1

12.3 Wigner-Weisskopf Theory

12.3.1 Interaction of an atom with a single mode e.m. field

Recall what we studied in Section 10.5. We consider again a two-level system (an atom) interacting with a single
mode of the e.m. field. The Hamiltonian simplifies to H = Ho + V, with

Ho = hwa'a + h%az, V =hgloya+o_al)

where g = %, /77=d - € is the dipole operator.
We move to the interaction frame defined by the Ho Hamiltonian, U = e?**0!, then H; = UVUT or

Hy = hgeiutu,faeiwazt/Q(o,_i_a + O,_GT)e—iutaTae—iwazt/2 _ hg ei(w—u)ta+a + e—i(w—u)to__a‘q

We will use the notation A = w — v. We want now to study the evolution of a pure state in the interaction frame:
ih 1 = Hr|y). We can write a general state as [1) = 3 ay(t) |e,n) + Ba(t) |g,n). Notice that since we have a TLS,
oy le) =0 and o_ |g) = 0. The evolution is then given by:

th Qg |€, 7’L> + Bn |97 7’L> = hgz [ana—aTe_iAt |e7 7’L> + Bno'-l-aeiAt |g7 7’L>}

= hgz [anefmt\/n +1|g,n+ 1)+ Bnet®/nle,n — 1)]
n
We then project these equations on (e, n| and (g, n|:
théy, = ﬁgﬁnJrl(t)eiAt vn+1

ihfBn = hgay,_1(t)e "4t /n
to obtain a set of equations: _

&y = —igﬂnJrleZAt\/n +1

Bn-{-l = _igane_iAt vn+1

This is a closed system of differential equations and we can solve for a,,, 8y41.
For example: we can assume that initially the atom is in the excited state |e) and it decays to the ground state |g)
(that is, 8,(0) = 0, ¥n). Then we have:

; 02,1 iA 02,1
_ 1At/2 n _ : n
an(t) = an(0)e [cos < 5 ) - sin < 5 )]
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(1) = —an()e 2 [HL Ly (D20

2

n

with 22 = A? + 4¢2(n + 1). If initially there is no field (i.e. the e.m. field is in the vacuum state) then ag(0) = 1,
while a,(0) = 0 Vn # 0. Then there are only two components that are different than zero:

; 20t 1A 20t
_ 1AtL/2 0 _ : 0
ao(t) =e [cos (—2 ) e vy sin (—2 )

. 2 00t
Bu(t) = —etAL/2 Y sin (—O>
VA2 +4g? 2
Thus, even in the absence of field, it is possible to make the transition from the ground to the excited state! In the

semiclassical case (where the field is treated as classical) we would have no transition at all. The oscillations obtained
in the quantum case are called the vacuum Rabi oscillations.

12.3.2 Interaction with many modes of the e.m. field

In analyzing the interaction of an atom with a single mode of radiation we found that transitions can occur only if
energy is conserved. In the real world however we are always confronted with a finite linewidth of any transition. In
order to find the linewidth we need to look at a multi-mode field.

Consider the same Hamiltonian as used in the previous section, but now we treat a field with many modes. The
interaction Hamiltonian in the interaction frame is given by

Vi = thZaerei(“_”")t + gkala_e_i(“’_”k)t
%

We consider a case similar to the one consider at the end of the previous section, where initially the e.m. field is in
the vacuum state and the atomic transition creates one photon. Now, however, this photon can be in one of many

modes. The state vector is then:
(1) = a(t)[e,0) + > Br |g, i)
k

(now the index k in 8, label the mode and not the photon number) and the initial conditions are «(0) = 1, 8;(0) = 0,
Vk. The system of equations for the coeflicients are

a(t) = =i 3, gre' B (t)
Bi(t) = —igre™ U )a(t)

If we consider this transition as a decay process from the excited to the ground state, |a(t)|? gives the decay
probability. To solve for «(t) we first integrate 5:

t
Qo= =iy gielTt ( | g a(t’)dt’)
L 0

We can rewrite the expression as:

t
i=-3%" |gk|2/0 4 =i (=1 o (1)
K

Assumption 1)
We assume that the modes of the e.m. form a continuum, so that we can replace the sum by an integral >, —

[ p(k)d®k, with the density of states set by vy = ck as usual: p(k)d3k = 2 (%)3 k2dk do sinddy.
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We then remember the explicit form of the interaction coupling in terms of the dipole operator:

Vi

lgx|? = TIE |deg|2 sin® 9
and using again v, = ck we obtain
4| deq|? o t , /

Assumption 2)

In order for the transition to happen, we still need v} ~ w.

This allows two simplifications: i) we can replace v with w? in the integral, and ii) we can extend the lower integral
limit to —oo (since anyway we know that it will give contributions only for vy &~ w). By furthermore inverting the
order of the integrals we obtain

o0 t t o) t
/ uzduk/ dt' - — / dt'a(t')w3/ dvge @)=t — / dt' a(tw32rd(t — ') = 2ra(t)w?
0 0 0 — 0

Thus, the differential equation defining the evolution of «(t) simplifies to

= 3nhé

Notice that the decay rate is related to Einstein’s emission rate, as I' = A, /4w as we should expect, since it is related
to the total emission (at any frequency) from the excited to the ground state.
Thus we have simply a(t) = e~7*/? and the decay probability Py = eIt

10}
08}
06
04l

021

5 10 15 20

Fig. 23: Lorentzian lineshape, centered at w = 12 and with a linewidth I" = 2

From the expression for «(t) we can go back and calculate an explicit form for Sy (t):
1— e—i(w—uk)te—Ft/2
(Vg —w) +1iI/2

The frequency spectrum of the emitted radiation is given by P(vk) = p(vi) Y515 [ d2[Br(t)[* in the limit where
t — oo.

t
ﬁk(t) _ —’L/ dt/gke—i(w—Vk)t/e_Ft’/Q = gr
0

1+e (1 —2cos|(w — vg)t] ~1/ F_2 + (w—wp)?
4

P(vg) o< lim
( k) t—00 FTQ + (w _ Vk)2

Thus the spectrum is a Lorenztian centered around w and with linewidth I
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12.4 Scattering of photons by atoms

In this section we want to study the scattering of photons by electrons (either free electrons or in an atom). We
previously studied similar processes:

- Scattering theory (with an example for thermal neutrons)

- Emission and absorption of photons (in the dipole approximation)

Notice that these last processes only involved a single photon (either absorbed or emitted). Now we want to study
the scattering of photons, meaning that there will be an incoming photon and an outgoing photon: this is a process
that involves two photons.

k'

AN~

K
Ai)

Fig. 24: Photon scattering cartoon

In order to study atom-photon interaction we need of course to start from the quantized e.m. field:

P 1 1 eA
=— +hw )=—1|p— — hw =
5 + hw(n + 2) 5 ( ) + hw(n+ =)
We can separate the interaction Hamiltonian as:
2 2
p 1 e e 5
= V=—4hw )+ ——p - A+A- A
H="Ho+ 2m +he(n + 2) * 2mc(p +A-p)+ 2mc?
Ho v

More generally, if there are many electrons, the interaction Hamiltonian is given by
2

ama A’

V=) —g—lpi- Alri) + A(ri) - pi] +

We already used the first term (in the dipole approximation -“Zp- A — d - E) to find emission and absorption
processes. As stated, these processes only involve one photon. How do we obtain processes that involve two photons?
Since from the term p- A and in the first order perturbation theory we do not get them, we will need

i) either terms o< A2, or
ii) second order perturbation for the term o p - A.

2
Notice that both these choices yield transitions that are oc a? = (Z—i) , that is, that are second order in the fine

structure constant.
Thus we want to calculate scattering transition rates given by W = 2%|K§2) + K2(1)|2p(Ef), where

° K§2) is the 274 order contribution from V; = - > pi- A; and

o K{" is the 1° order contribution from V5 = 5o 3, A2,

2me

K fl) is instead zero, since it only connects state that differ by one photon (thus it’s not a scattering process) and we
neglect higher orders than the second.
The initial and final eigenstates and eigenvalues are as follow (where v indicate the photon):
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‘ Initial Final In. Energy Fin. Energy

e |Az> |Af> €; Ef
v [Tk Ok ar) Ok x, s a) Ty, fiwy,
tot: |2) 1f) E; Ey

We first evaluate Kz(l) for a single electron. We recall the expression for the vector potential (see Section 10.3):
2 h 2
_ Z ThC ((L }\ezkr +ak —zkvr) gkk'

K2(1) is proportional to A%, but we only retain terms that link the correct modes (k, k') and that are responsible for
the annihilation of a photon in mode k and the creation of a photon of mode k’. These are terms o< aL,ak. We find:

2 2 - el
K5 = (J1Vali) = g 72— - ey

X (fl apyap €T 4 al g e FTT 4 of gl e=HTTTT 4 gy g et T )

—

We now use the equality wy = ¢|k| and k—k = qd = p/h (the electron recoil momentum) to simplify the expression.
Thus we obtain: ) 5
1 € 2whe* N -
Ky = 2me L3RR Y (Af| €T7 A7) (Oealion | annal, v [1iaOkar) |

where the last inner product is just equal to 1. We can now extend Kél) to many electrons:

2
1 e 2mhe P
K3 = (fIVali) = i et Af|§jeq A

This is the first contribution to the scattering matrix element, first order in perturbation theory from the quadratic
term in the field potential.

(2

We now want to calculate K, ), the second order contribution from the linear part V; of the potential:

Vi |h) (h| V7 |i
P S LA DL

h

Note that this term describes virtual transitions to intermediate states since from first order transitions V4 can only

create or annihilate one photon at a time. So there are two possible processes that contribute to K 1(2),

- first absorption of one photon in the kA mode followed by creation of one photon in the k')A’ mode: the intermediate
state is zero photons in these two modes.

- first creation of one photon in the k’\" mode followed by annihilation of the photon in mode k\: the intermediate
state is one photon in each mode.

Explicitly we have:

K@ _ Z (Af] Opalrn| Vi [0rx0rx) |AR) (An] (OxaOroar| Vi (12 0rrr) |As)
1 o € — €p, + hwy,
+ Z <Af| <Ok)\1k/)\/| V1 |1k)\1k’)\’> |Ah> <Ah| <1k)\1k/)\/| Vl |1k>\0k’)\’> |AZ>
€ + hwy, — (ep + hwy, + hwyr)

h

Notice that K 52) has an extra factor o< wg in the denominator with respect to K2(1). Thus at higher energies of the

incident photon (such as x-ray scattering) only K §2) survives, while at lower energies (optical regime) Kz(l) is more

important.
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A. Types of Scattering

Depending on the energy hw of the incident photon (with respect to the ionization energy E; of the atom) and on
the elastic or inelastic character of the scattering, the scattering process is designated with different names.

- Rayleigh scattering (Low energy, Elastic): hw < Ey, |E, — Ei|, E; = EJ.
The final state has the same energy as the initial one, £y = Fj; since the scattering is elastic. The scattering thus

involve intermediate virtual levels, with energies Ej,. We will find a cross section o oc w?.

- Raman scattering (Low energy, Inelastic): fww < Ej, Ef # Ef.
Usually the final state is a different rotovibrational state of the molecule, so the energy difference between initial
and final state is small. If Ey > Ej the scattering process is called Stokes, otherwise if £y < E; the scattering
process is called anti-Stokes.

- Thomson scattering (High energy, Elastic): fw > E;, Ef = EJ.
This process is predominant for, e.g., soft x-ray scattering. This type of scattering can be interpreted in a semi-
classical way, in the limit where the wavelength A is larger than the atomic dimensions, A < ag. The cross section

is then equivalent to what one would obtain for a free electron, o = %wr% with 7o the effective electron radius.

- Compton scattering (High energy, Inelastic): iw > Er, A < ao, Ef = EJ.
For very high energy, the wavelength is small compared to the atom’s size and the energy is much larger than the
electron binding energy, so that the final state of the electron is an unbound state. Thus this scattering is very
similar to Compton scattering (inelastic scattering) by a free electron.

Note that for x-ray scatterings the classification is slightly different than the one given above. There are two processes
that competes with Coulomb scattering even at the x-ray energies:

- Electronic Raman scattering: an inelastic scattering process where the initial atomic state is the ground state and
the final state an excited, discrete electronic state.

- Rayleigh scattering for x-rays: an elastic scattering process, where the final atomic state is the same as the initial
state, since there is no atom excitation.

In addition to scattering processes, other processes involving the interaction of a photon with electrons are possible
(besides absorption and emission of visible light that we already studied). In order of increasing photon energy, the
interaction of matter with e.m. radiation can be classified as:

Rayleigh/Raman  Photoelectric  Thomson  Compton Pair
Scattering Absorption  Scattering Scattering  Production
hw < B hw > E; ho>E;  hw~mec® hw>2m.c?
~eV ~keV ~keV ~MeV >MeV
Visible X-rays X-rays y-rays hard ~-rays

B. Semi-classical description of scattering

A classical picture is enough to give some scaling for the scattering cross section. We consider the effects of the
interaction of the e.m. wave with an oscillating dipole (as created by an atomic electron).

The electron can be seen as being attached to the atom by a ”spring”, and oscillating around its rest position with
frequency wg. When the e.m. is incident on the electron, it exerts an additional force. The force acting on the electron
is F = —eFE(t), with E(t) = Eysin(wt) the oscillating electric field. This oscillating driving force is in addition to the
attraction of the electron to the atom ~ —kz., where k (given by the Coulomb interaction strength and related to
the binding energy Ej) is linked to the electron’s oscillating frequency by w? = k/me. The equation of motion for
the electron is then B

Mede = —kxe — eE(t) — Fo +wir, = ——E(t)

€

We seek a solution of the form z.(t) = Asin(wt), then we have the equation

1
(o’ +w)A=——FE, —» A=——""F,

Me w
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An accelerated charge (or an oscillating dipole) radiates, with a power

2
_2¢ 2
3c3
where the accelaration a is here a = —w? A sin(wt), giving a mean square acceleration
2 2
o w ¢ 1
a”) = 5 s—Lo) 3
wg — W M 2

The radiated power is then

1 e? 2 w?
pP== E2
3 (m> (WE — w22

2
The radiation intensity is given by [y = 08% (recall that the e.m. energy density is given by u = %EQ and the
intensity, or power per unit area, is then I ~ cu). Then we can express the radiated power as cross-section xradiation
intensity:

P:O'IO

This yields the cross section for the interaction of e.m. radiation with atoms :
8T e\’ w? 2
7=73 2 2 _ 2
3 \mec Wi —w

8w e? 2 w? 2 2 w? 2
o= — =42l | ——
3 \dmwegmec? wd — w? 3 \wg —w?

where we used the classical electron radius £2:

or in SI units:

which is about 2.8 fm (2.8 x 10~ %m).

12.4.1 Thomson Scattering by Free Electrons

We consider first the Thomson scattering, which is well described by the scattering by free electrons. In this case we
consider thus one single electron. Also in general, the photon should have energy high enough that the electron is
seen as free even if in reality it is part of an atom (thus the photon energy must be larger than the atom’s ionization
energy, fuw > FEr or in other terms A > than the atom’s size). Note that in Thomson scattering the final electron is
still a bound electron (elastic scattering) while in Compton scattering the electron is unbound (inelastic scattering).
Still, since the binding energy is small compared to the other energy at play, the electron can be considered as a free
electron, and many of the characteristics of Compton scattering still apply.

| Initial Final | Initial Final
e : |A;) |[Af) En: | me* + ick = hck! 4+ \/p2c + m2ct
e 1Tk Or ) [0kxs Lirav) Do hk = hk' cos ¥ 4 peosp
tot: i) [f) Dy 0 = hk'sind — psin
40 The Bohr radius is a different quantity: rg ~ "'}:2 with some constants (depending on the units chosen) to give about

rg~5x 10" m
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The initial and final states, as well as energies and momentum are written above. They result from the conservation
of energy and momentum for a relativistic electron which is initially at rest.

? Question: What is the ratio k/k’? What is AX = X\’ — A? (This is the usual Compton scattering formula).
From conservation of energy and momentum and with the geometry of figure 25, we can calculate the energy of the scattered
photon.

E,+E.=E, +E, — hw + mec® = hw' + /|p|2c® + m2ct

hk = hk' cos ¥ + pcos

hk = Ik + P - { hk'sin® = psin ¢

From these equations we find p* = w [A(w' —w) — 2mc?] and cosp = /1 — h2k’? sin?9/p2. Solving for the change in
the wavelength A = 22 we find (with w = kc):
2mh

mec

AN

(1 —cos?)

or for the frequency:
-1
hw' = hw |14 %(1 — cos )

MeC

Fig. 25: Photon/Electron collision in Compton and Thomson scattering.

At these high energies, K £2) < Kél) thus we can consider only the K2(1) contribution, that we already calculated in
the previous section.

To find the scattering rate and cross section we need the density of states:

L 3
p(Ep)dE; = <2—> K2dk' d2

™

2
5= (non-relativistic approximation). Thus we need to

where the final energy is Ey = hek’ 4+ /p2c? + m2ct ~ hek! +

ddif . Noting that

calculate
p? /0% = |k — K'|? = k® + k'* — 2kk cos ¥

we find

dE; 2 hk (K
T :hc+%(2k’—2kcosﬂ):hc [1—1-% <E_COS§)]

Solving the conservation of energy and momentum equations, we find

% hk -
o1+ 221 = cos
. { + mc( oS )]

143



Since hk < mc, we can take only the first order term in 1+ % (’% — cos 19). This is given by: 1 4+ %(1 — cosv).
But this factor is just equal to k/k’. Thus we finally have:

dE; k L\® k3

Fig. 26: Wave vectors and polarizations of scattering photons. cos~y = sin ¢ cos ¥

Finally, to calculate the cross section, we recall the expression for the incoming flux of photons @ = ¢/L3.

d_U:M:EW(UFML_S: et ’ K’ 2|6 ok
a2~ /L3 P To R me? ) TR

With the angles defined in Fig. 26 we find:

d 2
ﬁzrf (Z—Z) sin?

where (siny)? = 1 — sin® ¥ cos?(¢ — ¢) and r, is the classical electron radius. The average differential cross section
(averaged over the polarization directions 1)) is then given by

do w2 1 W\ 2
<E> = Tg <(U_Z> (1 — Sin2 19/2) = 57’5 (w—:> (1 =+ COS2 19)
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12.4.2 Rayleigh Scattering of X-rays

Rayleigh scattering usually describes elastic scattering by low energy radiation. It describes for example visible light
scattering from atoms: in that case, the predominant contribution comes from the term K §2). Rayleigh scattering
also describes coherent, elastic scattering of x-rays from atoms (e.g. in a crystal) and is an important process in x-ray
diffraction.

In the case of x-ray scattering, the photon energy is larger then the electronic excitation energy: iw > Ej. Then
we have, as stated above, K(z) << K2(1) and we can neglect the K(2)
electrons, the recoil is zero, and &
The cross section is given by

do 27T|K(1 2p(Ef) 27 22 (2nh 2 I 12 .
i h C/L3 an :fc/L?’ (F) w<%) — ek - Ek’X| | AHZ q |A>|

wj .
=2 () e - Pl 3 €77 40 P
i

Consider an elastic scattering process (the inelastic scattering is called Raman scattering for x-rays). If the incoming
x-ray is unpolarized, we have

contribution. As we are considering now bound

L P40,

dk, = hc. Then the density of states is simply p(Ey) = 5=

do _r? 2 G-
o5 = 5 (14 cos 19)|<g|;eq
We define f(p) = (g| >, €'7" |g) the atomic form factor.

1) Notice that for p — 0 [ (g|>_;1]9)|> = Z? (the atomic number squared). Thus in general we expect Rayleigh
scattering to be weaker for lighter elements.

g9) 7

3

2) In general we can rewrite the sum as an integral ), e Ik €T 5(r)d®r using the charge density p(r) =

>;6(r —r;). Then the atomic form factor takes the form:

») =Gl [T lg) = [ TR

with p(r) = (g| p(r) |g). Then the atomic form factor is the Fourier transform of the charge density.

Scattering from a crystal

In a crystal, we can rewrite the electron positions with the substitution r; — R; 4+ r;;, where R; is the atom position
(or the nucleus position or the atomic center of mass position). Then we need to sum over all atoms and all electrons
in the atom. Then we have the structure factor:
= (g YT g) = filq)e'TH
1y

l

with f; = (g 33, €77t |g).
In a crystal we can rewrite the atom position as Ry; = lia1 + laas + l3a3 + T . Then
unit cell position in cell
f 1q 7 6 q(lia1+l2a2+13a3) F MZ (lia1+l2a2+13a3)
E J E
_\,_/
I1,la,l
F(q) 12

F(q) is the form factor for the unit cell, which is tabulated for different crystals. The cross section can be written as:

2
do rs

do _Te 2 sin (qua1/2) sin?(Nagas/2) sin?(N3qas/2)
a2

sin?(ga1/2)  sin®(qaz/2)  sin*(qaz/2)

Only when ga,, = 27h the interferences terms do not vanish: this is Bragg’s diffraction law.

1+ cos? ¥)|F(q)
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12.4.3 Visible Light Scattering

When considering visible light, the wavelength is large compared to the atomic size. Then, instead of using the full

interaction Vi + V5 we can safely substitute it with the electric dipole Hamiltonian, V = —d- E. This Hamiltonian
does not produce any two-photon process to first order, so in this case we need to cons1der the term K (?). This term
involves virtual transitions. Since the duration of these transitions is very small, we do not have to worry about

conservation of energy. Recall:
3 1V IR (R VA [E)

K® —
E; — E), ’

h

where V = —d - E. The intermediate states are either [h) = [A4) [0xx0w ) or |h) = [Az) [1ealpa ). It would be of
course possible to derive the scattering cross section from the vector-potential/momentum Hamiltonian, and in that

case both terms Kél) and K 52) should be included 22.
The electric field in the Lorentz gauge is

27r .
E = Z zé R de—zf-R) €ue,

and thus we obtain for (h| V7 |i) and (f| V7 |h):

- (Opalp x| (aégeié'R + OLZ e_ié'R) |0kAOkrar) = e~ Bg,
- <Ok>\0k')\'| (aggeze R + CL € —it R) |1k)\0k/>\/ = eik'R(Sgyk
- (Opalp x| (aéﬁew R4 a e —it R) [Tealn) = e* B,y

7
- <1k)\1k’)\'| (aggeze R + CL 671e R |1k)\0k/>\/ = etk 'R(sgyk/

thus we have

2mh A |d-€k/|Ah> <Ah|d/€k |Al> <Af|d'6k |Ah> <Ah|d-6k/|Ai>
K(Z) ~i(k—K')R f .
1 L3 wkwke Z €; — €p, + hwy, +Z el-—i-hwk—(eh—l—hwk—l—hwk/)

The scattering cross section is given as usual by —g = C/m]/:g,. and the density of state (assuming no recoil) is

Finally the cross section is given by:

do _2n (2nh)’ Ly KL
a2 \13 ) UMl ar) he e

do
df?

2
Z (dn - € )(dpi - €x) n (dn - €x)(dni - €xr)
€ — €p, + hwy, € — €, — hwpr

= kk"

2
3 (dyn - ex)(dhi - €x) n (dyn - €x)(dni - exr)
€ — € + hwy, € — €, — hwpr

h

4L A unitary transformation changes the Coulomb-gauge Hamiltonian into an expansion in terms of multipoles of the electro-
magnetic fields. For atomic interactions, only the electric dipole is kept, while higher multipoles, such as magnetic dipole and
electric quadrupole, can be neglected. This unitary transformation is describe, e.g., in Cohen-Tannoudji’s book, Atom-Photons
Interactions

42 This derivation can be found in Chen, S.H.; Kotlarchyk, M., Interactions of Photons and Neutrons with Matter, (2007)
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A. Rayleigh scattering

Rayleigh scattering describes elastic scattering, for which wy = wy since [Ay) = |A;). Then we can simplify the cross

section: )
do _

a9 Z (din - €x)(dni - €x) n (din - €x)(dni - €x)

€ — €p, + hwy, €; — €p, — hwy,

At long wavelengths hwy < €5, — €;, thus we can neglect wy in the denominator. Then

do 4
— X w
ds? k € — €p

22 (din - €x)(dni - €x) ’
I

and simplifying we obtain that

This expression could have been found from the classical cross section we presented earlier, in the same limit w < wy.
The Rayleigh scattering has a very strong dependence on the wavelength of the e.m. wave. This is what gives the
blue color to the sky (and the red color to the sunsets): more scattering occurs from higher frequencies photons (with
shorter wavelength, toward the blue color).

As light moves through the atmosphere, most of the longer wavelengths pass straight through. Little of the red,
orange and yellow light is affected by the air. However, much of the shorter wavelength light is scattered in different
directions all around the sky. Whichever direction one looks, some of this scattered blue light reaches you. Since the
blue light is seen from everywhere overhead, the sky looks blue.Closer to the horizon, the sky appears much paler
in color, since the scattered blue light must pass through more air. Some of it gets scattered away again in other
directions and the color of the sky near the horizon appears paler or white. As the sun begins to set, the light must
travel farther through the atmosphere. More of the light is reflected and scattered and the sun appears less bright.
The color of the sun itself appears to change, first to orange and then to red. This is because even more of the short
wavelength blues and greens are now scattered and only the longer wavelengths are left in the direct beam that
reaches the eyes. Finally, clouds appear white, since the water droplets that make up the cloud are much larger than
the molecules of the air and the scattering from them is almost independent of wavelength in the visible range.

B. Resonant Scattering

An interesting case arises when the incident photon energy matches the difference in energy between the atom’s
initial state and one of the intermediate levels. This phenomenon can occur both for elastic or inelastic scattering
(Rayleigh or Raman). Assume that fuw, = €, — ¢; for a particular h in the sum over all possible intermediate levels.

Then, only first term important in K §2) (describing first absorption and then emission) is important. In order to
keep this term finite, we introduce a finite width of the level, I'. The cross section then reduces to:
2
do _ '3 (dfn - € )(dni - €x) _ k3 [(dsn - exr)(dni - €x)
ds? eh—ei—hwk—iﬁf/2 Ry e —e (eh—ei—hwk)2+ﬁ21“2/4

hwy e —e€;

This cross section describes Raman resonance and, for k = &’ resonance fluorescence.

12.4.4 Photoelectric Effect

In this section we want to use scattering theory of a photon from electron(s) in an atom to explain the photoelectric
effect. We consider the case of an hydrogen-like atom with atomic number Z and we calculate the differential cross
section

do o Wfi

dw N GZi)inc
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where Wy; is the transition rate for the scattering event and @;,,. is the incoming photon flux. The incoming photon
flux can be calculated by assuming (for convenience) that the system is enclosed in a cavity of volume V = L3 (so
that there’s only one photon in that volume). The incoming flux of photons in the cavity is given by the number of
photons per unit area and time:

#photons 1 c

"~ time- Area  L/cL? L3

where the area is L? and the time to cross the cavity is ¢ = L/c. The transition rate Wy; is given by Fermi’s Golden
Rule, assuming an atom-photon interaction V' and a density of final state p(Ey):

Wy = 2071V 1) Po(Ey)

Here the final density of states p(E[) is expressed in terms of the momentum p of the scattered electron and the
solid angle df2 where it is ejected. Indeed, as the photon is absorbed, the final density of states is only given by the
free electron, again assumed to be enclosed in the volume V. The density of states for the electron is given by the
density of momentum states in the cavity L? assuming the electron propagates as a plane wave:

(LY
p(Ef)dEs = p(p)d*p = <%) p*dpds?

with the (non-relativistic) energy for the electron given by E; = p?/(2m) giving dE¢ = pdp/m. Finally

I \3
p(Ey) = (%) mpds?2

We next want to calculate the transition matrix element (f|V |i), where V = —%/T - p. The relevant states are

the photon states 1 E}\> and OE)\> and the electron momentum eigenstates, which in the position representation are

1#1(77) = <F|ie> and ¢f(F) = <F|fe>

The matrix element between the relevant states is then:

2mhe? T R - ;
Vig = —— (fel <0,;>\’ Z Toon [aﬁge + ag.e } €D 1];>\> ie)

e [ 2mh ihF t —iRF o
= =2\ Tawy el (€8x ae 1pa) €™+ (0g, al, 150 e e -Blic)
h.g

The only surviving term is
e 2mh

_ k-7 -
Vig = “m\ Liwy, (fel €™ egy - Plic)

Then turning to the position representation of |i.),|f.) and of the momentum operator, we can calculate an explicit
expression. Using ¢;(7) = (7lic), ¥ (7) = (F|fe) and €g, - P'= €z, - (—ihV), we have:

(fel €F ez, - Plic) = / PP Ter, - (—ihVi(7)
\%

oh
UV =~ o [ a7 6500 e, - (<inv,(5)

The final wave function t; is just a plane wave with momentum ¢ = p/h (in the volume L?). The initial wave
function is instead a bound state. You should have seen that for an hydrogen-like atom the wave function is given by

Finally
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;i (F) = \/i where a is the Bohr radius scaled by the atomic number Z (a = h?/(me?Z)). Replacing the explicit

expressions for 1¢; and vy in the previous result we obtain:

v - -2 F s [ ani-ar, { ()

We now define Ak = k — ¢ and evaluate the integral: f 43 FelARTE. . V; by parts:
/ ARTE Vi = @R T s — i AR - &y / d3 e AR T (7)
1%

Notice that the wavefunction vanishes at the boundaries, so the first term is zero. Also, by defining ¥ the angle
between Ak and r we can rewrite the integral as:
Ak €

ar /dr i (r)r sin(Akr)

s
—i2m Ak - €, / dr r?q; (T)/ et AkT cos() gin (9)d = —
0
To evaluate this last integral, we can extend the interval of integration to infinity, under the assumption that L > a:

<J0|V|i>:—L ﬁL(—zfi)( Ak ek)‘ \/—/ /e sin (Akr)dr

mL3\ wy |A

and use the equivalence fooo dre="/% sin(br) = ﬁ to obtain:
e2rh [2ha® Ak -éad®
mL3 w (1 +a?2Ak?)?
Notice that Ak - &, = k - &, — G- €x = —(q - € since k and the polarization are always perpendicular.

Now considering the density of states and the incoming flux of photons ®;,. = ¢/L? we obtain the scattering cross
section:

do  32e*a®q(q- €,)?

d2  mecwi(l + a2 Ak2)4

When the energy of the incoming photon is much higher than the electron binding energy, we have aAk > 1. In this
limit, we can rewrite the scattering cross section as

do _ 32e%%q(q-&)° a® g
A2 mecwg(a?Ak2)* T a8
Now the constant a is the Bohr radius scaled by the atomic number Z

hQ
me27

we thus find the well-known Z° dependence of the photoelectric effect cross-section.
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